IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/26104.html
   My bibliography  Save this paper

Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics

Author

Listed:
  • Guido Imbens

Abstract

In this essay I discuss potential outcome and graphical approaches to causality, and their relevance for empirical work in economics. I review some of the work on directed acyclic graphs, including the recent “The Book of Why,” ([Pearl and Mackenzie, 2018]). I also discuss the potential outcome framework developed by Rubin and coauthors, building on work by Neyman. I then discuss the relative merits of these approaches for empirical work in economics, focusing on the questions each answer well, and why much of the work in economics is closer in spirit to the potential outcome framework.

Suggested Citation

  • Guido Imbens, 2019. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," NBER Working Papers 26104, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:26104
    Note: LS
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w26104.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Charles F. Manski, 2013. "Response to the Review of ‘Public Policy in an Uncertain World’," Economic Journal, Royal Economic Society, vol. 0, pages 412-415, August.
    2. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    3. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    4. Angus Deaton, 2010. "Instruments, Randomization, and Learning about Development," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 424-455, June.
    5. Isakov, Leah & Lo, Andrew W. & Montazerhodjat, Vahid, 2019. "Is the FDA too conservative or too aggressive?: A Bayesian decision analysis of clinical trial design," Journal of Econometrics, Elsevier, vol. 211(1), pages 117-136.
    6. repec:hrv:faseco:30703974 is not listed on IDEAS
    7. Sandra E. Black, 1999. "Do Better Schools Matter? Parental Valuation of Elementary Education," The Quarterly Journal of Economics, Oxford University Press, vol. 114(2), pages 577-599.
    8. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    9. David Card, 1990. "The Impact of the Mariel Boatlift on the Miami Labor Market," ILR Review, Cornell University, ILR School, vol. 43(2), pages 245-257, January.
    10. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    11. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    12. D. R. Cox, 1992. "Causality: Some Statistical Aspects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 155(2), pages 291-301, March.
    13. Peter M. Steiner & Yongnam Kim & Courtney E. Hall & Dan Su, 2017. "Graphical Models for Quasi-experimental Designs," Sociological Methods & Research, , vol. 46(2), pages 155-188, March.
    14. Andrew Gelman & Guido Imbens, 2013. "Why ask Why? Forward Causal Inference and Reverse Causal Questions," NBER Working Papers 19614, National Bureau of Economic Research, Inc.
    15. Matzkin, Rosa L, 1991. "Semiparametric Estimation of Monotone and Concave Utility Functions for Polychotomous Choice Models," Econometrica, Econometric Society, vol. 59(5), pages 1315-1327, September.
    16. Sebastian Calonico & Matias D. Cattaneo & Rocio Titiunik, 2014. "Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs," Econometrica, Econometric Society, vol. 82, pages 2295-2326, November.
    17. Gary Chamberlain & Guido Imbens, 2004. "Random Effects Estimators with many Instrumental Variables," Econometrica, Econometric Society, vol. 72(1), pages 295-306, January.
    18. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    19. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records," American Economic Review, American Economic Association, vol. 80(3), pages 313-336, June.
    20. Leamer, Edward E, 1983. "Let's Take the Con Out of Econometrics," American Economic Review, American Economic Association, vol. 73(1), pages 31-43, March.
    21. Steven L. Scott, 2010. "A modern Bayesian look at the multi‐armed bandit," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(6), pages 639-658, November.
    22. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    23. Susan Athey & Raj Chetty & Guido Imbens & Hyunseung Kang, 2016. "Estimating Treatment Effects using Multiple Surrogates: The Role of the Surrogate Score and the Surrogate Index," Papers 1603.09326, arXiv.org, revised Feb 2020.
    24. O. Ashenfelter & D. Card (ed.), 1999. "Handbook of Labor Economics," Handbook of Labor Economics, Elsevier, edition 1, volume 3, number 3.
    25. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    26. Cook, Thomas D., 2008. ""Waiting for Life to Arrive": A history of the regression-discontinuity design in Psychology, Statistics and Economics," Journal of Econometrics, Elsevier, vol. 142(2), pages 636-654, February.
    27. Hendry,David F. & Morgan,Mary S., 1997. "The Foundations of Econometric Analysis," Cambridge Books, Cambridge University Press, number 9780521588706.
    28. Pearl Judea, 2019. "On the Interpretation of do(x)do(x)," Journal of Causal Inference, De Gruyter, vol. 7(1), pages 1-6, March.
    29. Deaton, Angus & Cartwright, Nancy, 2018. "Understanding and misunderstanding randomized controlled trials," Social Science & Medicine, Elsevier, vol. 210(C), pages 2-21.
    30. Xi Chen & Victor Chernozhukov & Iv'an Fern'andez-Val & Scott Kostyshak & Ye Luo, 2018. "Shape-Enforcing Operators for Point and Interval Estimators," Papers 1809.01038, arXiv.org, revised Feb 2021.
    31. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    32. Rosenbaum, Paul R., 2010. "Design Sensitivity and Efficiency in Observational Studies," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 692-702.
    33. Abadie, Alberto & Imbens, Guido W., 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 1-11.
    34. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2017. "Measuring the Sensitivity of Parameter Estimates to Estimation Moments," The Quarterly Journal of Economics, Oxford University Press, vol. 132(4), pages 1553-1592.
    35. Guido Imbens & Karthik Kalyanaraman, 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator," Review of Economic Studies, Oxford University Press, vol. 79(3), pages 933-959.
    36. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    37. Bryan S. Graham, 2015. "Methods of Identification in Social Networks," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 465-485, August.
    38. Susan Athey & Scott Stern, 1998. "An Empirical Framework for Testing Theories About Complimentarity in Organizational Design," NBER Working Papers 6600, National Bureau of Economic Research, Inc.
    39. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    40. Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-318, May.
    41. Marianne Bertrand & Sendhil Mullainathan, 2004. "Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination," American Economic Review, American Economic Association, vol. 94(4), pages 991-1013, September.
    42. Wilbert van der Klaauw, 2002. "Estimating the Effect of Financial Aid Offers on College Enrollment: A Regression-Discontinuity Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 43(4), pages 1249-1287, November.
    43. Guido W. Imbens, 2010. "Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 399-423, June.
    44. Heckman, J.J. & Hotz, V.J., 1988. "Choosing Among Alternative Nonexperimental Methods For Estimating The Impact Of Social Programs: The Case Of Manpower Training," University of Chicago - Economics Research Center 88-12, Chicago - Economics Research Center.
    45. Cecilia Rouse & Claudia Goldin, 2000. "Orchestrating Impartiality: The Impact of "Blind" Auditions on Female Musicians," American Economic Review, American Economic Association, vol. 90(4), pages 715-741, September.
    46. Per Pettersson-Lidbom, 2008. "Do Parties Matter for Economic Outcomes? A Regression-Discontinuity Approach," Journal of the European Economic Association, MIT Press, vol. 6(5), pages 1037-1056, September.
    47. Adam N. Glynn & Konstantin Kashin, 2018. "Front-Door Versus Back-Door Adjustment With Unmeasured Confounding: Bias Formulas for Front-Door and Hybrid Adjustments With Application to a Job Training Program," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1040-1049, July.
    48. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    49. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," Review of Economic Studies, Oxford University Press, vol. 60(3), pages 531-542.
    50. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records: Errata," American Economic Review, American Economic Association, vol. 80(5), pages 1284-1286, December.
    51. Manski, Charles F., 2013. "Public Policy in an Uncertain World: Analysis and Decisions," Economics Books, Harvard University Press, number 9780674066892, Spring.
    52. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    53. Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
    54. Wooldridge, Jeffrey M., 2001. "Asymptotic Properties Of Weighted M-Estimators For Standard Stratified Samples," Econometric Theory, Cambridge University Press, vol. 17(2), pages 451-470, April.
    55. Charles F. Manski, 1996. "Learning about Treatment Effects from Experiments with Random Assignment of Treatments," Journal of Human Resources, University of Wisconsin Press, vol. 31(4), pages 709-733.
    56. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
    57. Orley Ashenfelter & Cecilia Rouse, 1998. "Income, Schooling, and Ability: Evidence from a New Sample of Identical Twins," The Quarterly Journal of Economics, Oxford University Press, vol. 113(1), pages 253-284.
    58. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    59. Joshua D. Angrist & Kathryn Graddy & Guido W. Imbens, 2000. "The Interpretation of Instrumental Variables Estimators in Simultaneous Equations Models with an Application to the Demand for Fish," Review of Economic Studies, Oxford University Press, vol. 67(3), pages 499-527.
    60. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Dec 2017.
    61. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    62. P. Ding & T.J. Vanderweele & J. M. Robins, 2017. "Instrumental variables as bias amplifiers with general outcome and confounding," Biometrika, Biometrika Trust, vol. 104(2), pages 291-302.
    63. Ashenfelter, Orley & Krueger, Alan B, 1994. "Estimates of the Economic Returns to Schooling from a New Sample of Twins," American Economic Review, American Economic Association, vol. 84(5), pages 1157-1173, December.
    64. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    65. Pearl, Judea, 2015. "Trygve Haavelmo And The Emergence Of Causal Calculus," Econometric Theory, Cambridge University Press, vol. 31(1), pages 152-179, February.
    66. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    67. Griliches, Zvi, 1977. "Estimating the Returns to Schooling: Some Econometric Problems," Econometrica, Econometric Society, vol. 45(1), pages 1-22, January.
    68. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    69. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    70. Joel L. Horowitz, 2011. "Applied Nonparametric Instrumental Variables Estimation," Econometrica, Econometric Society, vol. 79(2), pages 347-394, March.
    71. Fan Li & Kari Lock Morgan & Alan M. Zaslavsky, 2018. "Balancing Covariates via Propensity Score Weighting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 390-400, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markku Maula & Wouter Stam, 2020. "Enhancing Rigor in Quantitative Entrepreneurship Research," Entrepreneurship Theory and Practice, , vol. 44(6), pages 1059-1090, November.
    2. {O}yvind Hoveid, 2021. "Constructing valid instrumental variables in generalized linear causal models from directed acyclic graphs," Papers 2102.08056, arXiv.org.
    3. Florian Gunsilius, 2019. "A path-sampling method to partially identify causal effects in instrumental variable models," Papers 1910.09502, arXiv.org, revised Jun 2020.
    4. Jin Li & Ye Luo & Xiaowei Zhang, 2021. "Causal Reinforcement Learning: An Instrumental Variable Approach," Papers 2103.04021, arXiv.org.
    5. Christoph Breunig & Patrick Burauel, 2021. "Testability of Reverse Causality without Exogeneous Variation," Papers 2107.05936, arXiv.org.
    6. Esterling, Kevin & Brady, David & Schwitzgebel, Eric, 2021. "The Necessity of Construct and External Validity for Generalized Causal Claims," OSF Preprints 2s8w5, Center for Open Science.
    7. Ali Tafti & Galit Shmueli, 2020. "Beyond Overall Treatment Effects: Leveraging Covariates in Randomized Experiments Guided by Causal Structure," Information Systems Research, INFORMS, vol. 31(4), pages 1183-1199, December.
    8. Capra, C. Mónica & Jiang, Bing & Su, Yuxin, 2021. "Altruistic self-concept mediates the effects of personality traits on volunteering: Evidence from an online experiment," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 92(C).
    9. Andrew Ellis & Heidi Christina Thysen, 2021. "Subjective Causality in Choice," Papers 2106.05957, arXiv.org, revised Oct 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    2. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    3. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    4. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    5. van der Klaauw, Bas, 2014. "From micro data to causality: Forty years of empirical labor economics," Labour Economics, Elsevier, vol. 30(C), pages 88-97.
    6. Committee, Nobel Prize, 2021. "Answering causal questions using observational data," Nobel Prize in Economics documents 2021-2, Nobel Prize Committee.
    7. Susan Athey & Raj Chetty & Guido Imbens, 2020. "Combining Experimental and Observational Data to Estimate Treatment Effects on Long Term Outcomes," Papers 2006.09676, arXiv.org.
    8. Mauricio Villamizar-Villegas & Freddy A. Pinzón-Puerto & María Alejandra Ruiz-Sánchez, 2020. "A Comprehensive History of Regression Discontinuity Designs: An Empirical Survey of the last 60 Years," Borradores de Economia 1112, Banco de la Republica de Colombia.
    9. Boris Salazar-Trujillo & Daniel Otero Robles, 2019. "La revolución empírica en economía," Revista Apuntes del Cenes, Universidad Pedagógica y Tecnológica de Colombia, vol. 38(68), pages 15-48, July.
    10. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    11. James J. Heckman, 2010. "Building Bridges between Structural and Program Evaluation Approaches to Evaluating Policy," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 356-398, June.
    12. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
    13. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    14. Bauer, Thomas K. & Bender, Stefan & Paloyo, Alfredo R. & Schmidt, Christoph M., 2012. "Evaluating the labor-market effects of compulsory military service," European Economic Review, Elsevier, vol. 56(4), pages 814-829.
    15. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    16. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    17. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Reproducing Kernel Methods for Nonparametric and Semiparametric Treatment Effects," Papers 2010.04855, arXiv.org, revised Apr 2021.
    18. Blaise Melly & Rafael Lalive, 2020. "Estimation, Inference, and Interpretation in the Regression Discontinuity Design," Diskussionsschriften dp2016, Universitaet Bern, Departement Volkswirtschaft.
    19. Gary Cornwall & Beau Sauley, 2021. "Indirect effects and causal inference: reconsidering regression discontinuity," Journal in Spatial Econometrics, Springer, vol. 2(1), pages 1-28, December.
    20. Guido W. Imbens, 2010. "Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 399-423, June.

    More about this item

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:26104. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.