IDEAS home Printed from https://ideas.repec.org/a/oup/restud/v79y2012i3p933-959.html
   My bibliography  Save this article

Optimal Bandwidth Choice for the Regression Discontinuity Estimator

Author

Listed:
  • Guido Imbens
  • Karthik Kalyanaraman

Abstract

We investigate the choice of the bandwidth for the regression discontinuity estimator. We focus on estimation by local linear regression, which was shown to have attractive properties (Porter, J. 2003, "Estimation in the Regression Discontinuity Model" (unpublished, Department of Economics, University of Wisconsin, Madison)). We derive the asymptotically optimal bandwidth under squared error loss. This optimal bandwidth depends on unknown functionals of the distribution of the data and we propose simple and consistent estimators for these functionals to obtain a fully data-driven bandwidth algorithm. We show that this bandwidth estimator is optimal according to the criterion of Li (1987, "Asymptotic Optimality for C p , C L , Cross-validation and Generalized Cross-validation: Discrete Index Set", Annals of Statistics, 15, 958--975), although it is not unique in the sense that alternative consistent estimators for the unknown functionals would lead to bandwidth estimators with the same optimality properties. We illustrate the proposed bandwidth, and the sensitivity to the choices made in our algorithm, by applying the methods to a data set previously analysed by Lee (2008, "Randomized Experiments from Non-random Selection in U.S. House Elections", Journal of Econometrics, 142, 675--697) as well as by conducting a small simulation study. Copyright , Oxford University Press.

Suggested Citation

  • Guido Imbens & Karthik Kalyanaraman, 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator," Review of Economic Studies, Oxford University Press, vol. 79(3), pages 933-959.
  • Handle: RePEc:oup:restud:v:79:y:2012:i:3:p:933-959
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/restud/rdr043
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frandsen, Brigham R. & Frölich, Markus & Melly, Blaise, 2012. "Quantile treatment effects in the regression discontinuity design," Journal of Econometrics, Elsevier, vol. 168(2), pages 382-395.
    2. Wilbert Van Der Klaauw, 2008. "Regression–Discontinuity Analysis: A Survey of Recent Developments in Economics," LABOUR, CEIS, vol. 22(2), pages 219-245, June.
    3. Jens Ludwig & Douglas L. Miller, 2007. "Does Head Start Improve Children's Life Chances? Evidence from a Regression Discontinuity Design," The Quarterly Journal of Economics, Oxford University Press, vol. 122(1), pages 159-208.
    4. Cook, Thomas D., 2008. ""Waiting for Life to Arrive": A history of the regression-discontinuity design in Psychology, Statistics and Economics," Journal of Econometrics, Elsevier, vol. 142(2), pages 636-654, February.
    5. Lee, David S., 2008. "Randomized experiments from non-random selection in U.S. House elections," Journal of Econometrics, Elsevier, vol. 142(2), pages 675-697, February.
    6. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    7. McCrary, Justin, 2008. "Manipulation of the running variable in the regression discontinuity design: A density test," Journal of Econometrics, Elsevier, vol. 142(2), pages 698-714, February.
    8. Powell, James L. & Stoker, Thomas M., 1996. "Optimal bandwidth choice for density-weighted averages," Journal of Econometrics, Elsevier, vol. 75(2), pages 291-316, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. Jin-young Choi & Myoung-jae Lee, 2017. "Regression discontinuity: review with extensions," Statistical Papers, Springer, vol. 58(4), pages 1217-1246, December.
    3. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    4. Steven F. Koch & Jeffrey S. Racine, 2016. "Healthcare facility choice and user fee abolition: regression discontinuity in a multinomial choice setting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 927-950, October.
    5. Deng, Taotao & Hu, Yukun & Ma, Mulan, 2019. "Regional policy and tourism: A quasi-natural experiment," Annals of Tourism Research, Elsevier, vol. 74(C), pages 1-16.
    6. Yoichi Arai & Hidehiko Ichimura, 2018. "Simultaneous selection of optimal bandwidths for the sharp regression discontinuity estimator," Quantitative Economics, Econometric Society, vol. 9(1), pages 441-482, March.
    7. Ivan A Canay & Vishal Kamat, 2018. "Approximate Permutation Tests and Induced Order Statistics in the Regression Discontinuity Design," Review of Economic Studies, Oxford University Press, vol. 85(3), pages 1577-1608.
    8. Villena, Mauricio G. & Sanchez, Rafael & Rojas, Eugenio, 2011. "Unintended Consequences of Childcare Regulation in Chile: Evidence from a Regression Discontinuity Design," MPRA Paper 62096, University Library of Munich, Germany, revised 10 Feb 2015.
    9. Ari Hyytinen & Jaakko Meriläinen & Tuukka Saarimaa & Otto Toivanen & Janne Tukiainen, 2018. "When does regression discontinuity design work? Evidence from random election outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 1019-1051, July.
    10. Miyazaki, Takeshi, 2016. "Intergovernmental Fiscal Transfers and Tax Efforts: Evidence from Japan," MPRA Paper 74337, University Library of Munich, Germany.
    11. Markus Frölich & Martin Huber, 2019. "Including Covariates in the Regression Discontinuity Design," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 736-748, October.
    12. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    13. Stefano Gagliarducci & M. Daniele Paserman, 2012. "Gender Interactions within Hierarchies: Evidence from the Political Arena," Review of Economic Studies, Oxford University Press, vol. 79(3), pages 1021-1052.
    14. Stefano Gagliarducci & Tommaso Nannicini & Paolo Naticchioni, 2011. "Electoral Rules and Politicians' Behavior: A Micro Test," American Economic Journal: Economic Policy, American Economic Association, vol. 3(3), pages 144-174, August.
    15. Stefano Gagliarducci & Tommaso Nannicini, 2013. "Do Better Paid Politicians Perform Better? Disentangling Incentives From Selection," Journal of the European Economic Association, European Economic Association, vol. 11(2), pages 369-398, April.
    16. Bartalotti Otávio, 2019. "Regression Discontinuity and Heteroskedasticity Robust Standard Errors: Evidence from a Fixed-Bandwidth Approximation," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-26, January.
    17. Papay, John P. & Willett, John B. & Murnane, Richard J., 2011. "Extending the regression-discontinuity approach to multiple assignment variables," Journal of Econometrics, Elsevier, vol. 161(2), pages 203-207, April.
    18. Sotomayor, Orlando, 2013. "Fetal and infant origins of diabetes and ill health: Evidence from Puerto Rico's 1928 and 1932 hurricanes," Economics & Human Biology, Elsevier, vol. 11(3), pages 281-293.
    19. Geneletti, Sara & Baio, Gianluca & O'Keeffe, Aidan & Ricciardi, Federico, 2019. "Bayesian modelling for binary outcomes in the regression discontinuity design," LSE Research Online Documents on Economics 100096, London School of Economics and Political Science, LSE Library.
    20. de Lazzer, Jakob, 2016. "Non-monotonic Selection Issues in Electoral Regression Discontinuity Designs," VfS Annual Conference 2016 (Augsburg): Demographic Change 145845, Verein für Socialpolitik / German Economic Association.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:79:y:2012:i:3:p:933-959. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) The email address of this maintainer does not seem to be valid anymore. Please ask Oxford University Press to update the entry or send us the correct email address or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.