IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/20773.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

External Validity in Fuzzy Regression Discontinuity Designs

Author

Listed:
  • Marinho Bertanha
  • Guido W. Imbens

Abstract

Many empirical studies use Fuzzy Regression Discontinuity (FRD) designs to identify treatment effects when the receipt of treatment is potentially correlated to outcomes. Existing FRD methods identify the local average treatment effect (LATE) on the subpopulation of compliers with values of the forcing variable that are equal to the threshold. We develop methods that assess the plausibility of generalizing LATE to subpopulations other than compliers, and to subpopulations other than those with forcing variable equal to the threshold. Specifically, we focus on testing the equality of the distributions of potential outcomes for treated compliers and always-takers, and for non-treated compliers and never-takers. We show that equality of these pairs of distributions implies that the expected outcome conditional on the forcing variable and the treatment status is continuous in the forcing variable at the threshold, for each of the two treatment regimes. As a matter of routine, we recommend that researchers present graphs with estimates of these two conditional expectations in addition to graphs with estimates of the expected outcome conditional on the forcing variable alone. We illustrate our methods using data on the academic performance of students attending the summer school program in two large school districts in the US.

Suggested Citation

  • Marinho Bertanha & Guido W. Imbens, 2014. "External Validity in Fuzzy Regression Discontinuity Designs," NBER Working Papers 20773, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:20773
    Note: CH DEV ED EH IO LS PE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w20773.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sandra E. Black, 1999. "Do Better Schools Matter? Parental Valuation of Elementary Education," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 577-599.
    2. Sebastian Calonico & Matias D. Cattaneo & Rocio Titiunik, 2014. "Robust data-driven inference in the regression-discontinuity design," Stata Journal, StataCorp LP, vol. 14(4), pages 909-946, December.
    3. Sebastian Calonico & Matias D. Cattaneo & Rocio Titiunik, 2014. "Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs," Econometrica, Econometric Society, vol. 82, pages 2295-2326, November.
    4. Brian A. Jacob & Lars Lefgren, 2004. "Remedial Education and Student Achievement: A Regression-Discontinuity Analysis," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 226-244, February.
    5. Jens Ludwig & Douglas L. Miller, 2007. "Does Head Start Improve Children's Life Chances? Evidence from a Regression Discontinuity Design," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(1), pages 159-208.
    6. Joshua D. Angrist, 2004. "Treatment effect heterogeneity in theory and practice," Economic Journal, Royal Economic Society, vol. 114(494), pages 52-83, March.
    7. Cook, Thomas D., 2008. ""Waiting for Life to Arrive": A history of the regression-discontinuity design in Psychology, Statistics and Economics," Journal of Econometrics, Elsevier, vol. 142(2), pages 636-654, February.
    8. Battistin, Erich & Rettore, Enrico, 2008. "Ineligibles and eligible non-participants as a double comparison group in regression-discontinuity designs," Journal of Econometrics, Elsevier, vol. 142(2), pages 715-730, February.
    9. Doug Miller & Jens Ludwig, 2005. "Does Head Start Improve Children?s Life Chances? Evidence from a Regression Discontinuity Design," Working Papers 54, University of California, Davis, Department of Economics.
    10. Yingying Dong & Arthur Lewbel, 2015. "Identifying the Effect of Changing the Policy Threshold in Regression Discontinuity Models," The Review of Economics and Statistics, MIT Press, vol. 97(5), pages 1081-1092, December.
    11. Wilbert van der Klaauw, 2002. "Estimating the Effect of Financial Aid Offers on College Enrollment: A Regression-Discontinuity Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 43(4), pages 1249-1287, November.
    12. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    13. Andrew Gelman & Guido Imbens, 2019. "Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 447-456, July.
    14. Doug Miller & Jens Ludwig, 2005. "Does Head Start Improve Children?s Life Chances? Evidence from a Regression Discontinuity Design," Working Papers 534, University of California, Davis, Department of Economics.
    15. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    16. Guido Imbens & Karthik Kalyanaraman, 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 933-959.
    17. Lalive, Rafael, 2008. "How do extended benefits affect unemployment duration A regression discontinuity approach," Journal of Econometrics, Elsevier, vol. 142(2), pages 785-806, February.
    18. Bertanha, Marinho, 2020. "Regression discontinuity design with many thresholds," Journal of Econometrics, Elsevier, vol. 218(1), pages 216-241.
    19. Joshua D. Angrist & Victor Lavy, 1999. "Using Maimonides' Rule to Estimate the Effect of Class Size on Scholastic Achievement," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 533-575.
    20. Joshua Angrist & Miikka Rokkanen, 2012. "Wanna Get Away? RD Identification Away from the Cutoff," NBER Working Papers 18662, National Bureau of Economic Research, Inc.
    21. Lee, David S., 2008. "Randomized experiments from non-random selection in U.S. House elections," Journal of Econometrics, Elsevier, vol. 142(2), pages 675-697, February.
    22. McCrary, Justin, 2008. "Manipulation of the running variable in the regression discontinuity design: A density test," Journal of Econometrics, Elsevier, vol. 142(2), pages 698-714, February.
    23. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    24. Matsudaira, Jordan D., 2008. "Mandatory summer school and student achievement," Journal of Econometrics, Elsevier, vol. 142(2), pages 829-850, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauricio Villamizar‐Villegas & Freddy A. Pinzon‐Puerto & Maria Alejandra Ruiz‐Sanchez, 2022. "A comprehensive history of regression discontinuity designs: An empirical survey of the last 60 years," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1130-1178, September.
    2. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    3. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    4. Jin-young Choi & Myoung-jae Lee, 2017. "Regression discontinuity: review with extensions," Statistical Papers, Springer, vol. 58(4), pages 1217-1246, December.
    5. Blaise Melly & Rafael Lalive, 2020. "Estimation, Inference, and Interpretation in the Regression Discontinuity Design," Diskussionsschriften dp2016, Universitaet Bern, Departement Volkswirtschaft.
    6. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    7. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    8. Guido Imbens & Stefan Wager, 2019. "Optimized Regression Discontinuity Designs," The Review of Economics and Statistics, MIT Press, vol. 101(2), pages 264-278, May.
    9. Frandsen, Brigham R. & Frölich, Markus & Melly, Blaise, 2012. "Quantile treatment effects in the regression discontinuity design," Journal of Econometrics, Elsevier, vol. 168(2), pages 382-395.
    10. David S. Lee & Thomas Lemieux, 2009. "Regression Discontinuity Designs In Economics," Working Papers 1118, Princeton University, Department of Economics, Industrial Relations Section..
    11. Bertanha, Marinho & Moreira, Marcelo J., 2020. "Impossible inference in econometrics: Theory and applications," Journal of Econometrics, Elsevier, vol. 218(2), pages 247-270.
    12. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
    13. Porter, Jack & Yu, Ping, 2015. "Regression discontinuity designs with unknown discontinuity points: Testing and estimation," Journal of Econometrics, Elsevier, vol. 189(1), pages 132-147.
    14. Bertanha, Marinho, 2020. "Regression discontinuity design with many thresholds," Journal of Econometrics, Elsevier, vol. 218(1), pages 216-241.
    15. Deng, Taotao & Hu, Yukun & Ma, Mulan, 2019. "Regional policy and tourism: A quasi-natural experiment," Annals of Tourism Research, Elsevier, vol. 74(C), pages 1-16.
    16. Kettlewell, Nathan & Siminski, Peter, 2020. "Optimal Model Selection in RDD and Related Settings Using Placebo Zones," IZA Discussion Papers 13639, Institute of Labor Economics (IZA).
    17. de Lazzer, Jakob, 2016. "Non-monotonic Selection Issues in Electoral Regression Discontinuity Designs," VfS Annual Conference 2016 (Augsburg): Demographic Change 145845, Verein für Socialpolitik / German Economic Association.
    18. Yiqi Liu & Yuan Qi, 2023. "Using Forests in Multivariate Regression Discontinuity Designs," Papers 2303.11721, arXiv.org, revised Jul 2024.
    19. Dong, Yingying, 2010. "Jumpy or Kinky? Regression Discontinuity without the Discontinuity," MPRA Paper 25461, University Library of Munich, Germany.
    20. Loris Vergolini & Nadir Zanini, 2012. "How does aid matter? The effect of financial aid on university enrolment decisions," Working Papers 2012/7, Institut d'Economia de Barcelona (IEB).

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:20773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.