IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v82y2014ip2295-2326.html
   My bibliography  Save this article

Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs

Author

Listed:
  • Sebastian Calonico
  • Matias D. Cattaneo
  • Rocio Titiunik

Abstract

In the regression‐discontinuity (RD) design, units are assigned to treatment based on whether their value of an observed covariate exceeds a known cutoff. In this design, local polynomial estimators are now routinely employed to construct confidence intervals for treatment effects. The performance of these confidence intervals in applications, however, may be seriously hampered by their sensitivity to the specific bandwidth employed. Available bandwidth selectors typically yield a “large” bandwidth, leading to data‐driven confidence intervals that may be biased, with empirical coverage well below their nominal target. We propose new theory‐based, more robust confidence interval estimators for average treatment effects at the cutoff in sharp RD, sharp kink RD, fuzzy RD, and fuzzy kink RD designs. Our proposed confidence intervals are constructed using a bias‐corrected RD estimator together with a novel standard error estimator. For practical implementation, we discuss mean squared error optimal bandwidths, which are by construction not valid for conventional confidence intervals but are valid with our robust approach, and consistent standard error estimators based on our new variance formulas. In a special case of practical interest, our procedure amounts to running a quadratic instead of a linear local regression. More generally, our results give a formal justification to simple inference procedures based on increasing the order of the local polynomial estimator employed. We find in a simulation study that our confidence intervals exhibit close‐to‐correct empirical coverage and good empirical interval length on average, remarkably improving upon the alternatives available in the literature. All results are readily available in R and STATA using our companion software packages described in Calonico, Cattaneo, and Titiunik (2014d, 2014b).

Suggested Citation

  • Sebastian Calonico & Matias D. Cattaneo & Rocio Titiunik, 2014. "Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs," Econometrica, Econometric Society, vol. 82, pages 2295-2326, November.
  • Handle: RePEc:wly:emetrp:v:82:y:2014:i::p:2295-2326
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:82:y:2014:i::p:2295-2326. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.