IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v37y2019i3p447-456.html
   My bibliography  Save this article

Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs

Author

Listed:
  • Andrew Gelman
  • Guido Imbens

Abstract

It is common in regression discontinuity analysis to control for third, fourth, or higher-degree polynomials of the forcing variable. There appears to be a perception that such methods are theoretically justified, even though they can lead to evidently nonsensical results. We argue that controlling for global high-order polynomials in regression discontinuity analysis is a flawed approach with three major problems: it leads to noisy estimates, sensitivity to the degree of the polynomial, and poor coverage of confidence intervals. We recommend researchers instead use estimators based on local linear or quadratic polynomials or other smooth functions.

Suggested Citation

  • Andrew Gelman & Guido Imbens, 2019. "Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 447-456, July.
  • Handle: RePEc:taf:jnlbes:v:37:y:2019:i:3:p:447-456
    DOI: 10.1080/07350015.2017.1366909
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2017.1366909
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    2. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    3. Sebastian Calonico & Matias D. Cattaneo & Rocio Titiunik, 2014. "Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs," Econometrica, Econometric Society, vol. 82, pages 2295-2326, November.
    4. Brian A. Jacob & Lars Lefgren, 2004. "Remedial Education and Student Achievement: A Regression-Discontinuity Analysis," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 226-244, February.
    5. Wilbert Van Der Klaauw, 2008. "Regression–Discontinuity Analysis: A Survey of Recent Developments in Economics," LABOUR, CEIS, vol. 22(2), pages 219-245, June.
    6. Guido Imbens & Karthik Kalyanaraman, 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator," Review of Economic Studies, Oxford University Press, vol. 79(3), pages 933-959.
    7. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    8. Matsudaira, Jordan D., 2008. "Mandatory summer school and student achievement," Journal of Econometrics, Elsevier, vol. 142(2), pages 829-850, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:37:y:2019:i:3:p:447-456. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/UBES20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.