IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/16110.html
   My bibliography  Save this paper

Building Bridges Between Structural and Program Evaluation Approaches to Evaluating Policy

Author

Listed:
  • James J. Heckman

Abstract

This paper compares the structural approach to economic policy analysis with the program evaluation approach. It offers a third way to do policy analysis that combines the best features of both approaches. We illustrate the value of this alternative approach by making the implicit economics of LATE explicit, thereby extending the interpretability and range of policy questions that LATE can answer.

Suggested Citation

  • James J. Heckman, 2010. "Building Bridges Between Structural and Program Evaluation Approaches to Evaluating Policy," NBER Working Papers 16110, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:16110
    Note: LS TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w16110.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    2. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    3. Heckman, James J & Lochner, Lance & Taber, Christopher, 1998. "Tax Policy and Human-Capital Formation," American Economic Review, American Economic Association, vol. 88(2), pages 293-297, May.
    4. Pedro Carneiro & James J. Heckman & Edward Vytlacil, 2010. "Evaluating Marginal Policy Changes and the Average Effect of Treatment for Individuals at the Margin," Econometrica, Econometric Society, vol. 78(1), pages 377-394, January.
    5. Stephen V. Cameron & Christopher Taber, 2004. "Estimation of Educational Borrowing Constraints Using Returns to Schooling," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 132-182, February.
    6. James H. Stock, 2010. "The Other Transformation in Econometric Practice: Robust Tools for Inference," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 83-94, Spring.
    7. Heckman, James J & Lochner, Lance & Taber, Christopher, 1998. "General-Equilibrium Treatment Effects: A Study of Tuition Policy," American Economic Review, American Economic Association, vol. 88(2), pages 381-386, May.
    8. Finn E. Kydland & Edward C. Prescott, 1996. "The Computational Experiment: An Econometric Tool," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 69-85, Winter.
    9. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    10. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 487-535.
    11. Carneiro, Pedro & Hansen, Karsten T. & Heckman, James J., 2003. "Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College Choice," IZA Discussion Papers 767, Institute of Labor Economics (IZA).
    12. James J. Heckman & Jeffrey A. Smith, 1995. "Assessing the Case for Social Experiments," Journal of Economic Perspectives, American Economic Association, vol. 9(2), pages 85-110, Spring.
    13. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    14. Heckman, James J. & Vytlacil, Edward J., 2000. "The relationship between treatment parameters within a latent variable framework," Economics Letters, Elsevier, vol. 66(1), pages 33-39, January.
    15. Schennach, Susanne & White, Halbert & Chalak, Karim, 2012. "Local indirect least squares and average marginal effects in nonseparable structural systems," Journal of Econometrics, Elsevier, vol. 166(2), pages 282-302.
    16. J. Levin & L. Einav., 2012. "Empirical Industrial Organization: A Progress Report," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 1.
    17. Heckman, James J. & Urzúa, Sergio, 2010. "Comparing IV with structural models: What simple IV can and cannot identify," Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
    18. Kenneth I. Wolpin & Petra E. Todd, 2006. "Assessing the Impact of a School Subsidy Program in Mexico: Using a Social Experiment to Validate a Dynamic Behavioral Model of Child Schooling and Fertility," American Economic Review, American Economic Association, vol. 96(5), pages 1384-1417, December.
    19. Matzkin, Rosa L., 1993. "Nonparametric identification and estimation of polychotomous choice models," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 137-168, July.
    20. Francis Vella, 1998. "Estimating Models with Sample Selection Bias: A Survey," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 127-169.
    21. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    22. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    23. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    24. Aviv Nevo & Michael D. Whinston, 2010. "Taking the Dogma out of Econometrics: Structural Modeling and Credible Inference," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 69-82, Spring.
    25. Elie Tamer, 2003. "Incomplete Simultaneous Discrete Response Model with Multiple Equilibria," Review of Economic Studies, Oxford University Press, vol. 70(1), pages 147-165.
    26. Heckman, J.J. & Hotz, V.J., 1988. "Choosing Among Alternative Nonexperimental Methods For Estimating The Impact Of Social Programs: The Case Of Manpower Training," University of Chicago - Economics Research Center 88-12, Chicago - Economics Research Center.
    27. Wagner, Alfred, 1891. "Marshall's Principles of Economics," History of Economic Thought Articles, McMaster University Archive for the History of Economic Thought, vol. 5, pages 319-338.
    28. James Heckman & Lance Lochner & Christopher Taber, 1998. "Explaining Rising Wage Inequality: Explanations With A Dynamic General Equilibrium Model of Labor Earnings With Heterogeneous Agents," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 1(1), pages 1-58, January.
    29. Matzkin, Rosa L, 1992. "Nonparametric and Distribution-Free Estimation of the Binary Threshold Crossing and the Binary Choice Models," Econometrica, Econometric Society, vol. 60(2), pages 239-270, March.
    30. James J. Heckman, 2001. "Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture," Journal of Political Economy, University of Chicago Press, vol. 109(4), pages 673-748, August.
    31. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," Review of Economic Studies, Oxford University Press, vol. 60(3), pages 531-542.
    32. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    33. Donald W. K. Andrews & Marcia M. A. Schafgans, 1998. "Semiparametric Estimation of the Intercept of a Sample Selection Model," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 497-517.
    34. Heckman, James J, 1996. "Randomization as an Instrumental Variable: Notes," The Review of Economics and Statistics, MIT Press, vol. 78(2), pages 336-341, May.
    35. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    36. Heckman, James J, 1974. "Shadow Prices, Market Wages, and Labor Supply," Econometrica, Econometric Society, vol. 42(4), pages 679-694, July.
    37. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    38. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    39. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    40. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    41. James J. Heckman, 2000. "Causal Parameters and Policy Analysis in Economics: A Twentieth Century Retrospective," The Quarterly Journal of Economics, Oxford University Press, vol. 115(1), pages 45-97.
    42. Sims, Christopher A, 1972. "Money, Income, and Causality," American Economic Review, American Economic Association, vol. 62(4), pages 540-552, September.
    43. Christopher A. Sims, 1996. "Macroeconomics and Methodology," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 105-120, Winter.
    44. James Heckman, 1997. "Instrumental Variables: A Study of Implicit Behavioral Assumptions Used in Making Program Evaluations," Journal of Human Resources, University of Wisconsin Press, vol. 32(3), pages 441-462.
    45. Christopher A. Sims, 2010. "But Economics Is Not an Experimental Science," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 59-68, Spring.
    46. Edward E. Leamer, 2010. "Tantalus on the Road to Asymptopia," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 31-46, Spring.
    47. Poirier, Dale J., 1980. "Partial observability in bivariate probit models," Journal of Econometrics, Elsevier, vol. 12(2), pages 209-217, February.
    48. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Galiani & Juan Pantano, 2021. "Structural Models: Inception and Frontier," NBER Working Papers 28698, National Bureau of Economic Research, Inc.
    2. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    3. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    4. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    5. Deborah A. Cobb‐Clark & Thomas Crossley, 2003. "Econometrics for Evaluations: An Introduction to Recent Developments," The Economic Record, The Economic Society of Australia, vol. 79(247), pages 491-511, December.
    6. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    7. Aakvik, Arild & Heckman, James J. & Vytlacil, Edward J., 2005. "Estimating treatment effects for discrete outcomes when responses to treatment vary: an application to Norwegian vocational rehabilitation programs," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 15-51.
    8. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    9. Dionissi Aliprantis, 2011. "Assessing the evidence on neighborhood effects from moving to opportunity," Working Papers (Old Series) 1101, Federal Reserve Bank of Cleveland.
    10. Anirban Basu & James J. Heckman & Salvador Navarro‐Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self‐selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157, November.
    11. James J. Heckman, 2008. "Econometric Causality," International Statistical Review, International Statistical Institute, vol. 76(1), pages 1-27, April.
    12. Arild Aakvik & James J. Heckman & Edward J. Vytlacil, 2000. "Treatment Effects for Discrete Outcomes when Responses to Treatment Vary Among Observationally Identical Persons: An Application to Norwegian ..," NBER Technical Working Papers 0262, National Bureau of Economic Research, Inc.
    13. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    14. Heckman, James J. & Humphries, John Eric & Veramendi, Gregory, 2016. "Dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 191(2), pages 276-292.
    15. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    16. Dionissi Aliprantis, 2013. "Covariates and causal effects: the problem of context," Working Papers (Old Series) 1310, Federal Reserve Bank of Cleveland.
    17. Burt S. Barnow & Jeffrey Smith, 2015. "Employment and Training Programs," NBER Chapters, in: Economics of Means-Tested Transfer Programs in the United States, Volume 2, pages 127-234, National Bureau of Economic Research, Inc.
    18. Guido Imbens, 2019. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," NBER Working Papers 26104, National Bureau of Economic Research, Inc.
    19. Carneiro, Pedro & Hansen, Karsten & Heckman, James, 2003. "Estimating distributions of treatment effects with an application to the returns to schooling and measurement of the effects of uncertainty on college choice," Working Paper Series 2003:9, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    20. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • D6 - Microeconomics - - Welfare Economics
    • H43 - Public Economics - - Publicly Provided Goods - - - Project Evaluation; Social Discount Rate

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:16110. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.