IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/10-15.html
   My bibliography  Save this paper

Who should be treated? Empirical welfare maximization methods for treatment choice

Author

Listed:
  • Toru Kitagawa

    (Institute for Fiscal Studies and University College London)

  • Aleksey Tetenov

    (Institute for Fiscal Studies and University of Geneva)

Abstract

One of the main objectives of empirical analysis of experiments and quasi-experiments is to inform policy decisions that determine the allocation of treatments to individuals with different observable covariates. We propose the Empirical Welfare Maximization (EWM) method, which estimates a treatment assignment policy by maximizing the sample analog of average social welfare over a class of candidate treatment policies. The EWM approach is attractive in terms of both statistical performance and practical implementation in realistic settings of policy design. Common features of these settings include: (i) feasible treatment assignment rules are constrained exogenously for ethical, legislative, or political reasons, (ii) a policy maker wants a simple treatment assignment rule based on one or more eligibility scores in order to reduce the dimensionality of individual observable characteristics, and/or (iii) the proportion of individuals who can receive the treatment is a priori limited due to a budget or a capacity constraint. We show that when the propensity score is known, the average social welfare attained by EWM rules converges at least at n^(-1/2) rate to the maximum obtainable welfare uniformly over a minimally constrained class of data distributions, and this uniform convergence rate is minimax optimal. In comparison with this benchmark rate, we examine how the uniform convergence rate of the average welfare improves or deteriorates depending on the richness of the class of candidate decision rules, the distribution of conditional treatment effects, and the lack of knowledge of the propensity score. We provide an asymptotically valid inference procedure for the population welfare gain obtained by exercising the EWM rule. We offer easily implementable algorithms for computing the EWM rule and an application using experimental data from the National JTPA Study

Suggested Citation

  • Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP10/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:10/15
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/cemmap/wps/cwp101515.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Timothy B. Armstrong & Shu Shen, 2013. "Inference on Optimal Treatment Assignments," Cowles Foundation Discussion Papers 1927RR, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    2. Linton, Oliver & Song, Kyungchul & Whang, Yoon-Jae, 2010. "An improved bootstrap test of stochastic dominance," Journal of Econometrics, Elsevier, vol. 154(2), pages 186-202, February.
    3. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    4. Keisuke Hirano & Jack R. Porter, 2009. "Asymptotics for Statistical Treatment Rules," Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
    5. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    6. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    7. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    8. Elliott, Graham & Lieli, Robert P., 2013. "Predicting binary outcomes," Journal of Econometrics, Elsevier, vol. 174(1), pages 15-26.
    9. Florios, Kostas & Skouras, Spyros, 2008. "Exact computation of max weighted score estimators," Journal of Econometrics, Elsevier, vol. 146(1), pages 86-91, September.
    10. Kasy, Maximilian, 2017. "Optimal taxation and insurance using machine learning," Working Paper 56221, Harvard University OpenScholar.
    11. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    12. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    13. Dehejia, Rajeev H., 2005. "Program evaluation as a decision problem," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 141-173.
    14. Lieli, Robert P. & White, Halbert, 2010. "The construction of empirical credit scoring rules based on maximization principles," Journal of Econometrics, Elsevier, vol. 157(1), pages 110-119, July.
    15. Manski, Charles F. & Thompson, T. Scott, 1989. "Estimation of best predictors of binary response," Journal of Econometrics, Elsevier, vol. 40(1), pages 97-123, January.
    16. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    17. Howard S. Bloom & Larry L. Orr & Stephen H. Bell & George Cave & Fred Doolittle & Winston Lin & Johannes M. Bos, 1997. "The Benefits and Costs of JTPA Title II-A Programs: Key Findings from the National Job Training Partnership Act Study," Journal of Human Resources, University of Wisconsin Press, vol. 32(3), pages 549-576.
    18. Stephen G. Donald & Yu-Chin Hsu, 2016. "Improving the Power of Tests of Stochastic Dominance," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 553-585, April.
    19. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers 10/15, Institute for Fiscal Studies.
    2. Davide Viviano & Jelena Bradic, 2020. "Fair Policy Targeting," Papers 2005.12395, arXiv.org, revised Jun 2022.
    3. Toru Kitagawa & Shosei Sakaguchi & Aleksey Tetenov, 2021. "Constrained Classification and Policy Learning," Papers 2106.12886, arXiv.org, revised Jul 2023.
    4. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    5. Toru Kitagawa & Hugo Lopez & Jeff Rowley, 2022. "Stochastic Treatment Choice with Empirical Welfare Updating," Papers 2211.01537, arXiv.org, revised Feb 2023.
    6. Firpo, Sergio & Galvao, Antonio F. & Kobus, Martyna & Parker, Thomas & Rosa-Dias, Pedro, 2020. "Loss Aversion and the Welfare Ranking of Policy Interventions," IZA Discussion Papers 13176, Institute of Labor Economics (IZA).
    7. Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
    8. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    9. Toru Kitagawa & Aleksey Tetenov, 2017. "Equality-minded treatment choice," CeMMAP working papers 10/17, Institute for Fiscal Studies.
    10. Toru Kitagawa & Aleksey Tetenov, 2021. "Equality-Minded Treatment Choice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 561-574, March.
    11. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    12. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
    13. Yuya Sasaki & Takuya Ura, 2020. "Welfare Analysis via Marginal Treatment Effects," Papers 2012.07624, arXiv.org.
    14. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    15. Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    17. Kohei Yata, 2021. "Optimal Decision Rules Under Partial Identification," Papers 2111.04926, arXiv.org, revised Aug 2023.
    18. Takuya Ishihara & Toru Kitagawa, 2021. "Evidence Aggregation for Treatment Choice," Papers 2108.06473, arXiv.org, revised Jul 2024.
    19. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    20. Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.

    More about this item

    Keywords

    Randomized experiments; statistical treatment rules; minimax rate optimality; VC-dimension;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:10/15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.