IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/1173.html
   My bibliography  Save this paper

Asymptotics for statistical treatment rules

Author

Listed:
  • Hirano, Keisuke
  • Porter, Jack

Abstract

This paper develops asymptotic optimality theory for statistical treatment rules in smooth parametric and semiparametric models. Manski (2000, 2002, 2004) and Dehejia (2005) have argued that the problem of choosing treatments to maximize social welfare is distinct from the point estimation and hypothesis testing problems usually considered in the treatment effects literature, and advocate formal analysis of decision procedures that map empirical data into treatment choices. We develop large-sample approximations to statistical treatment assignment problems in both randomized experiments and observational data settings in which treatment effects are identified. We derive a local asymptotic minmax regret bound on social welfare, and a local asymptotic risk bound for a two-point loss function. We show that certain natural treatment assignment rules attain these bounds.

Suggested Citation

  • Hirano, Keisuke & Porter, Jack, 2006. "Asymptotics for statistical treatment rules," MPRA Paper 1173, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:1173
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/1173/1/MPRA_paper_1173.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    treatment effect; statistical decision theory; minmax regret; treatment assignment rules;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:1173. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.