IDEAS home Printed from https://ideas.repec.org/p/cca/wpaper/119.html

Statistical Treatment Choice Based on Asymmetric Minimax Regret Criteria

Author

Listed:
  • Aleksey Tetenov

Abstract

This paper studies the problem of treatment choice between a status quo treatment with a known outcome distribution and an innovation whose outcomes are observed only in a representative finite sample. I evaluate statistical decision rules, which are functions that map sample outcomes into the planner’s treatment choice for the population, based on regret, which is the expected welfare loss due to assigning inferior treatments. I extend previous work that applied the minimax regret criterion to treatment choice problems by considering decision criteria that asymmetrically treat Type I regret (due to mistakenly choosing an inferior new treatment) and Type II regret (due to mistakenly rejecting a superior innovation). I derive exact finite sample solutions to these problems for experiments with normal, Bernoulli and bounded distributions of individual outcomes. In conclusion, I discuss approaches to the problem for other classes of distributions. Along the way, the paper compares asymmetric minimax regret criteria with statistical decision rules based on classical hypothesis tests.

Suggested Citation

  • Aleksey Tetenov, 2009. "Statistical Treatment Choice Based on Asymmetric Minimax Regret Criteria," Carlo Alberto Notebooks 119, Collegio Carlo Alberto.
  • Handle: RePEc:cca:wpaper:119
    as

    Download full text from publisher

    File URL: https://www.carloalberto.org/wp-content/uploads/2018/11/no.119.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanni Bert (email available below). General contact details of provider: https://edirc.repec.org/data/fccaait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.