IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Statistical Treatment Choice Based on Asymmetric Minimax Regret Criteria

  • Aleksey Tetenov

This paper studies the problem of treatment choice between a status quo treatment with a known outcome distribution and an innovation whose outcomes are observed only in a representative finite sample. I evaluate statistical decision rules, which are functions that map sample outcomes into the planner’s treatment choice for the population, based on regret, which is the expected welfare loss due to assigning inferior treatments. I extend previous work that applied the minimax regret criterion to treatment choice problems by considering decision criteria that asymmetrically treat Type I regret (due to mistakenly choosing an inferior new treatment) and Type II regret (due to mistakenly rejecting a superior innovation). I derive exact finite sample solutions to these problems for experiments with normal, Bernoulli and bounded distributions of individual outcomes. In conclusion, I discuss approaches to the problem for other classes of distributions. Along the way, the paper compares asymmetric minimax regret criteria with statistical decision rules based on classical hypothesis tests.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Collegio Carlo Alberto in its series Carlo Alberto Notebooks with number 119.

in new window

Length: 38 pages
Date of creation: 2009
Date of revision:
Handle: RePEc:cca:wpaper:119
Contact details of provider: Postal: Via Real Collegio, 30, 10024 Moncalieri (To)
Phone: +390116705000
Fax: +390116476847
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
  2. Tversky, Amos & Kahneman, Daniel, 1992. " Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
  3. Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers CWP03/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  4. Manski Charles F, 2009. "Adaptive Partial Drug Approval: A Health Policy Proposal," The Economists' Voice, De Gruyter, vol. 6(4), pages 1-5, March.
  5. Hayashi, Takashi, 2008. "Regret aversion and opportunity dependence," Journal of Economic Theory, Elsevier, vol. 139(1), pages 242-268, March.
  6. Stoye, J rg, 2007. "Minimax Regret Treatment Choice With Incomplete Data And Many Treatments," Econometric Theory, Cambridge University Press, vol. 23(01), pages 190-199, February.
  7. Hirano, Keisuke & Porter, Jack, 2006. "Asymptotics for statistical treatment rules," MPRA Paper 1173, University Library of Munich, Germany.
  8. Manski, Charles F., 2007. "Minimax-regret treatment choice with missing outcome data," Journal of Econometrics, Elsevier, vol. 139(1), pages 105-115, July.
  9. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-91, March.
  10. Jörg Stoye, 2011. "Statistical decisions under ambiguity," Theory and Decision, Springer, vol. 70(2), pages 129-148, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:119. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Giovanni Bert)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.