IDEAS home Printed from https://ideas.repec.org/a/spr/jecrev/v74y2023i4d10.1007_s42973-023-00147-0.html
   My bibliography  Save this article

Minimax-regret treatment rules with many treatments

Author

Listed:
  • Matthew A. Masten

    (Duke University)

Abstract

Statistical treatment rules map data into treatment choices. Optimal treatment rules maximize social welfare. Although some finite sample results exist, it is generally difficult to prove that a particular treatment rule is optimal. This paper develops asymptotic and numerical results on minimax-regret treatment rules when there are many treatments. I first extend a result of Hirano and Porter (Econometrica 77:1683–1701, 2009) to show that an empirical success rule is asymptotically optimal under the minimax-regret criterion. The key difference is that I use a permutation invariance argument from Lehmann (Ann Math Stat 37:1–6, 1966) to solve the limit experiment instead of applying results from hypothesis testing. I then compare the finite sample performance of several treatment rules. I find that the empirical success rule performs poorly in unbalanced designs, and that when prior information about treatments is symmetric, balanced designs are preferred to unbalanced designs. Finally, I discuss how to compute optimal finite sample rules by applying methods from computational game theory.

Suggested Citation

  • Matthew A. Masten, 2023. "Minimax-regret treatment rules with many treatments," The Japanese Economic Review, Springer, vol. 74(4), pages 501-537, October.
  • Handle: RePEc:spr:jecrev:v:74:y:2023:i:4:d:10.1007_s42973-023-00147-0
    DOI: 10.1007/s42973-023-00147-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42973-023-00147-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42973-023-00147-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Kyungchul, 2014. "Point Decisions For Interval–Identified Parameters," Econometric Theory, Cambridge University Press, vol. 30(2), pages 334-356, April.
    2. Felix Kubler & Karl Schmedders, 2010. "Tackling Multiplicity of Equilibria with Gröbner Bases," Operations Research, INFORMS, vol. 58(4-part-2), pages 1037-1050, August.
    3. Chamberlain, Gary, 2000. "Econometrics and decision theory," Journal of Econometrics, Elsevier, vol. 95(2), pages 255-283, April.
    4. Keisuke Hirano & Jack R. Porter, 2009. "Asymptotics for Statistical Treatment Rules," Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
    5. John List & Sally Sadoff & Mathis Wagner, 2011. "So you want to run an experiment, now what? Some simple rules of thumb for optimal experimental design," Experimental Economics, Springer;Economic Science Association, vol. 14(4), pages 439-457, November.
    6. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    7. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    8. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    9. Manski, Charles F., 2000. "Identification problems and decisions under ambiguity: Empirical analysis of treatment response and normative analysis of treatment choice," Journal of Econometrics, Elsevier, vol. 95(2), pages 415-442, April.
    10. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    11. Otsu, Taisuke, 2008. "Large deviation asymptotics for statistical treatment rules," Economics Letters, Elsevier, vol. 101(1), pages 53-56, October.
    12. Ron N. Borkovsky & Ulrich Doraszelski & Yaroslav Kryukov, 2010. "A User's Guide to Solving Dynamic Stochastic Games Using the Homotopy Method," Operations Research, INFORMS, vol. 58(4-part-2), pages 1116-1132, August.
    13. Manski, Charles F., 2007. "Minimax-regret treatment choice with missing outcome data," Journal of Econometrics, Elsevier, vol. 139(1), pages 105-115, July.
    14. Stoye, Jörg, 2007. "Minimax Regret Treatment Choice With Incomplete Data And Many Treatments," Econometric Theory, Cambridge University Press, vol. 23(1), pages 190-199, February.
    15. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    16. Dehejia, Rajeev H., 2005. "Program evaluation as a decision problem," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 141-173.
    17. Toru Kitagawa & Aleksey Tetenov, 2017. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers 24/17, Institute for Fiscal Studies.
    18. Stoye, Jörg, 2012. "Minimax regret treatment choice with covariates or with limited validity of experiments," Journal of Econometrics, Elsevier, vol. 166(1), pages 138-156.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stoye, Jörg, 2012. "Minimax regret treatment choice with covariates or with limited validity of experiments," Journal of Econometrics, Elsevier, vol. 166(1), pages 138-156.
    2. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
    3. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    4. Keisuke Hirano & Jack R. Porter, 2016. "Panel Asymptotics and Statistical Decision Theory," The Japanese Economic Review, Japanese Economic Association, vol. 67(1), pages 33-49, March.
    5. Neil Christy & Amanda Ellen Kowalski, 2024. "Counting Defiers in Health Care: A Design-Based Model of an Experiment Can Reveal Evidence Against Monotonicity," Papers 2412.16352, arXiv.org, revised Mar 2025.
    6. Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Robust Forecasting," Papers 2011.03153, arXiv.org, revised Dec 2020.
    7. Daido Kido, 2023. "Locally Asymptotically Minimax Statistical Treatment Rules Under Partial Identification," Papers 2311.08958, arXiv.org.
    8. Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2022. "Functional Sequential Treatment Allocation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1311-1323, September.
    9. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2023. "Treatment choice, mean square regret and partial identification," The Japanese Economic Review, Springer, vol. 74(4), pages 573-602, October.
    10. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    11. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    12. Hirano, Keisuke & Porter, Jack R., 2020. "Asymptotic analysis of statistical decision rules in econometrics," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 283-354, Elsevier.
    13. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    14. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    15. Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
    16. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    17. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
    18. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    19. Toru Kitagawa & Guanyi Wang, 2020. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP59/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Toru Kitagawa & Guanyi Wang, 2020. "Who Should Get Vaccinated? Individualized Allocation of Vaccines Over SIR Network," Papers 2012.04055, arXiv.org, revised Jul 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecrev:v:74:y:2023:i:4:d:10.1007_s42973-023-00147-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.