IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v157y2010i1p110-119.html
   My bibliography  Save this article

The construction of empirical credit scoring rules based on maximization principles

Author

Listed:
  • Lieli, Robert P.
  • White, Halbert

Abstract

We examine the econometric implications of the decision problem faced by a profit/utility-maximizing lender operating in a simple "double-binary" environment, where the two actions available are "approve" or "reject", and the two states of the world are "pay back" or "default". In practice, such decisions are often made by applying a fixed cutoff to the maximum likelihood estimate of a parametric model of the default probability. Following (Elliott and Lieli, 2007), we argue that this practice might contradict the lender's economic objective and, using German loan data, we illustrate the use of "context-specific" cutoffs and an estimation method derived directly from the lender's problem. We also provide a brief discussion of how to incorporate legal constraints, such as the prohibition of disparate treatment of potential borrowers, into the lender's problem.

Suggested Citation

  • Lieli, Robert P. & White, Halbert, 2010. "The construction of empirical credit scoring rules based on maximization principles," Journal of Econometrics, Elsevier, vol. 157(1), pages 110-119, July.
  • Handle: RePEc:eee:econom:v:157:y:2010:i:1:p:110-119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00281-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helen F. Ladd, 1998. "Evidence on Discrimination in Mortgage Lending," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 41-62, Spring.
    2. Becker, Gary S., 1971. "The Economics of Discrimination," University of Chicago Press Economics Books, University of Chicago Press, edition 2, number 9780226041162, April.
    3. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541.
    4. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    5. Elliott, Graham & Lieli, Robert P., 2013. "Predicting binary outcomes," Journal of Econometrics, Elsevier, vol. 174(1), pages 15-26.
    6. Phelps, Edmund S, 1972. "The Statistical Theory of Racism and Sexism," American Economic Review, American Economic Association, vol. 62(4), pages 659-661, September.
    7. Davidson, Russell & MacKinnon, James G., 1984. "Convenient specification tests for logit and probit models," Journal of Econometrics, Elsevier, vol. 25(3), pages 241-262, July.
    8. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    9. Crook, Jonathan & Banasik, John, 2004. "Does reject inference really improve the performance of application scoring models?," Journal of Banking & Finance, Elsevier, vol. 28(4), pages 857-874, April.
    10. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP10/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Le-Yu Chen & Sokbae Lee, 2016. "Best Subset Binary Prediction," Papers 1610.02738, arXiv.org, revised Nov 2017.
    3. Halbert White & Karim Chalak, 2008. "Identifying Structural Effects in Nonseparable Systems Using Covariates," Boston College Working Papers in Economics 734, Boston College Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:157:y:2010:i:1:p:110-119. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.