IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme

Listed author(s):
  • James J. Heckman
  • Hidehiko Ichimura
  • Petra E. Todd

This paper considers whether it is possible to devise a nonexperimental procedure for evaluating a prototypical job training programme. Using rich nonexperimental data, we examine the performance of a two-stage evaluation methodology that (a) estimates the probability that a person participates in a programme and (b) uses the estimated probability in extensions of the classical method of matching. We decompose the conventional measure of programme evaluation bias into several components and find that bias due to selection on unobservables, commonly called selection bias in econometrics, is empirically less important than other components, although it is still a sizeable fraction of the estimated programme impact. Matching methods applied to comparison groups located in the same labour markets as participants and administered the same questionnaire eliminate much of the bias as conventionally measured, but the remaining bias is a considerable fraction of experimentally-determined programme impact estimates. We test and reject the identifying assumptions that justify the classical method of matching. We present a nonparametric conditional difference-in-differences extension of the method of matching that is consistent with the classical index-sufficient sample selection model and is not rejected by our tests of identifying assumptions. This estimator is effective in eliminating bias, especially when it is due to temporally-invariant omitted variables.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.2307/2971733
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Oxford University Press in its journal The Review of Economic Studies.

Volume (Year): 64 (1997)
Issue (Month): 4 ()
Pages: 605-654

as
in new window

Handle: RePEc:oup:restud:v:64:y:1997:i:4:p:605-654.
Contact details of provider:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:64:y:1997:i:4:p:605-654.. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.