IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i521p390-400.html
   My bibliography  Save this article

Balancing Covariates via Propensity Score Weighting

Author

Listed:
  • Fan Li
  • Kari Lock Morgan
  • Alan M. Zaslavsky

Abstract

Covariate balance is crucial for unconfounded descriptive or causal comparisons. However, lack of balance is common in observational studies. This article considers weighting strategies for balancing covariates. We define a general class of weights—the balancing weights—that balance the weighted distributions of the covariates between treatment groups. These weights incorporate the propensity score to weight each group to an analyst-selected target population. This class unifies existing weighting methods, including commonly used weights such as inverse-probability weights as special cases. General large-sample results on nonparametric estimation based on these weights are derived. We further propose a new weighting scheme, the overlap weights, in which each unit’s weight is proportional to the probability of that unit being assigned to the opposite group. The overlap weights are bounded, and minimize the asymptotic variance of the weighted average treatment effect among the class of balancing weights. The overlap weights also possess a desirable small-sample exact balance property, based on which we propose a new method that achieves exact balance for means of any selected set of covariates. Two applications illustrate these methods and compare them with other approaches.

Suggested Citation

  • Fan Li & Kari Lock Morgan & Alan M. Zaslavsky, 2018. "Balancing Covariates via Propensity Score Weighting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 390-400, January.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:390-400
    DOI: 10.1080/01621459.2016.1260466
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1260466
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1260466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:390-400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.