IDEAS home Printed from
   My bibliography  Save this paper

Identification And Estimation Of Nonparametric Structural


  • Woocheol Kim


This paper concerns a new statistical approach to instrumental variables (IV) method for nonparametric structural models with additive errors. A general identifying condition of the model is proposed, based on richness of the space generated by marginal discretizations of joint density functions. For consistent estimation, we develop statistical regularization theory to solve a random Fredholm integral equation of the first kind. A\ minimal set of conditions are given for consistency of a general regularization method. Using an abstract smoothness condition, we derive some optimal bounds, given the accuracies of preliminary estimates, and show the convergence rates of various regularization methods, including (the ordinary/iterated/generalized) Tikhonov and Showalter's methods. An application of the general regularization theory is discussed with a focus on a kernel smoothing method. We show an exact closed form, as well as the optimal convergence rate, of the kernel IV estimates of various regularization methods. The finite sample properties of the estimates are investigated via a small-scale Monte Carlo experiment

Suggested Citation

  • Woocheol Kim, 2004. "Identification And Estimation Of Nonparametric Structural," Econometric Society 2004 Far Eastern Meetings 733, Econometric Society.
  • Handle: RePEc:ecm:feam04:733

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    3. Joseph G. Altonji & Rosa L. Matzkin, 2001. "Panel Data Estimators for Nonseparable Models with Endogenous Regressors," NBER Technical Working Papers 0267, National Bureau of Economic Research, Inc.
    4. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    5. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," Review of Economic Studies, Oxford University Press, vol. 71(3), pages 655-679.
    6. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    7. Oliver Linton & Enno Mammen, 2003. "Estimating Semiparametric ARCH (8) Models by Kernel Smoothing Methods," STICERD - Econometrics Paper Series 453, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    8. Andrew Chesher, 2002. "Local identification in nonseparable models," CeMMAP working papers CWP05/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Donald J. Brown & Rosa L. Matzkin, 1998. "Estimation of Nonparametric Functions in Simultaneous Equations Models, with an Application to Consumer Demand," Cowles Foundation Discussion Papers 1175, Cowles Foundation for Research in Economics, Yale University.
    10. Amemiya, Takeshi, 1974. "The nonlinear two-stage least-squares estimator," Journal of Econometrics, Elsevier, vol. 2(2), pages 105-110, July.
    11. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    12. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, September.
    13. Peter Hall & Joel L. Horowitz, 2003. "Nonparametric methods for inference in the presence of instrumental variables," CeMMAP working papers CWP02/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Nonparametric Strucutral Models; IV estimation; Statistical inverse problems;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:feam04:733. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.