IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i12p4124-4148.html
   My bibliography  Save this article

Quantile inference for near-integrated autoregressive time series under infinite variance and strong dependence

Author

Listed:
  • Chan, Ngai Hang
  • Zhang, Rong-Mao

Abstract

Consider a near-integrated time series driven by a heavy-tailed and long-memory noise , where {[eta]j} is a sequence of i.i.d random variables belonging to the domain of attraction of a stable law with index [alpha]. The limit distribution of the quantile estimate and the semi-parametric estimate of the autoregressive parameters with long- and short-range dependent innovations are established in this paper. Under certain regularity conditions, it is shown that when the noise is short-memory, the quantile estimate converges weakly to a mixture of a Gaussian process and a stable Ornstein-Uhlenbeck (O-U) process while the semi-parametric estimate converges weakly to a normal distribution. But when the noise is long-memory, the limit distribution of the quantile estimate becomes substantially different. Depending on the range of the stable index [alpha], the limit distribution is shown to be either a functional of a fractional stable O-U process or a mixture of a stable process and a stable O-U process. These results indicate that although the quantile estimate tends to be more efficient for infinite variance time series, extreme caution should be exercised in the long-memory situation.

Suggested Citation

  • Chan, Ngai Hang & Zhang, Rong-Mao, 2009. "Quantile inference for near-integrated autoregressive time series under infinite variance and strong dependence," Stochastic Processes and their Applications, Elsevier, vol. 119(12), pages 4124-4148, December.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:12:p:4124-4148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00161-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, Enero-Abr.
    2. Phillips, P.C.B., 1990. "Time Series Regression With a Unit Root and Infinite-Variance Errors," Econometric Theory, Cambridge University Press, vol. 6(1), pages 44-62, March.
    3. Davis, Richard A. & Knight, Keith & Liu, Jian, 1992. "M-estimation for autoregressions with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 145-180, February.
    4. Resnick, Sidney & Greenwood, Priscilla, 1979. "A bivariate stable characterization and domains of attraction," Journal of Multivariate Analysis, Elsevier, vol. 9(2), pages 206-221, June.
    5. Benoit Mandelbrot, 1967. "The Variation of Some Other Speculative Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 393-393.
    6. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    7. Knight, Keith, 1991. "Limit Theory for M-Estimates in an Integrated Infinite Variance," Econometric Theory, Cambridge University Press, vol. 7(2), pages 200-212, June.
    8. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    9. Mandelbrot, Benoit B, 1972. "Correction of an Error in "The Variation of Certain Speculative Prices" (1963)," The Journal of Business, University of Chicago Press, vol. 45(4), pages 542-543, October.
    10. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    11. Surgailis, Donatas, 0. "Stable limits of empirical processes of moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 255-274, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. M. Mahinda Samarakoon & Keith Knight, 2009. "A Note on Unit Root Tests with Infinite Variance Noise," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 314-334.
    2. Jungjun Choi & In Choi, 2019. "Maximum likelihood estimation of autoregressive models with a near unit root and Cauchy errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1121-1142, October.
    3. Hasan, Mohammad N., 2001. "Rank tests of unit root hypothesis with infinite variance errors," Journal of Econometrics, Elsevier, vol. 104(1), pages 49-65, August.
    4. Serttas, Fatma Ozgu, 2010. "Essays on infinite-variance stable errors and robust estimation procedures," ISU General Staff Papers 201001010800002742, Iowa State University, Department of Economics.
    5. Fatma Ozgu Serttas, 2018. "Infinite-Variance Error Structure in Finance and Economics," International Econometric Review (IER), Econometric Research Association, vol. 10(1), pages 14-23, April.
    6. Yang, Yaxing & Ling, Shiqing, 2017. "Self-weighted LAD-based inference for heavy-tailed threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 197(2), pages 368-381.
    7. Caner, Mehmet, 1998. "Tests for cointegration with infinite variance errors," Journal of Econometrics, Elsevier, vol. 86(1), pages 155-175, June.
    8. Sandrine Jacob Leal, 2015. "Fundamentalists, chartists and asset pricing anomalies," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1837-1850, November.
    9. Ho, Hwai-Chung, 2015. "Sample quantile analysis for long-memory stochastic volatility models," Journal of Econometrics, Elsevier, vol. 189(2), pages 360-370.
    10. Qing Xu & Terry Childs, 2013. "Evaluating forecast performances of the quantile autoregression models in the present global crisis in international equity markets," Applied Financial Economics, Taylor & Francis Journals, vol. 23(2), pages 105-117, January.
    11. Zernov, Serguei & Zinde-Walsh, Victoria & Galbraith, John W., 2009. "Asymptotics for estimation of quantile regressions with truncated infinite-dimensional processes," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 497-508, March.
    12. Sandrine Jacob Leal, 2015. "Fundamentalists, Chartists and Asset pricing anomalies," Post-Print hal-01508002, HAL.
    13. K. D. Patterson & S. M. Heravi, 2003. "The impact of fat-tailed distributions on some leading unit roots tests," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(6), pages 635-667.
    14. Marcel Ausloos, 2013. "Econophysics: Comments on a Few Applications, Successes, Methods and Models," IIM Kozhikode Society & Management Review, , vol. 2(2), pages 101-115, July.
    15. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    16. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    17. Scheffknecht, Lukas & Geiger, Felix, 2011. "A behavioral macroeconomic model with endogenous boom-bust cycles and leverage dynamcis," FZID Discussion Papers 37-2011, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    18. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    19. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    20. Frank J. Fabozzi & Radu Tunaru & Tony Wu, 2004. "Modeling Volatility for the Chinese Equity Markets," Annals of Economics and Finance, Society for AEF, vol. 5(1), pages 79-92, May.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:12:p:4124-4148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.