IDEAS home Printed from https://ideas.repec.org/p/hit/econdp/2005-04.html

Nonparametric Estimation of Conditional Medians for Linear and Related Processes

Author

Listed:
  • Honda, Toshio
  • 本田, 敏雄

Abstract

We consider nonparametric estimation of conditional medians for time series data. The time series data are generated from two mutually independent linear processes. The linear processes may show long-range dependence.The estimator of the conditional medians is based on minimizing the locally weighted sum of absolute deviations for local linear regression. We present the asymptotic distribution of the estimator. The rate of convergence is independent of regressors in our setting. The result of a simulation study is also given.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)<
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Honda, Toshio & 本田, 敏雄, 2007. "Nonparametric Estimation of Conditional Medians for Linear and Related Processes," Discussion Papers 2005-04, Graduate School of Economics, Hitotsubashi University.
  • Handle: RePEc:hit:econdp:2005-04
    Note: September 2005; October 2007 (revised)
    as

    Download full text from publisher

    File URL: https://hit-u.repo.nii.ac.jp/record/2052366/files/070econDP05-04.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Toshio Honda, 2013. "Nonparametric quantile regression with heavy-tailed and strongly dependent errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 23-47, February.
    3. Honda, Toshio, 2013. "Nonparametric LAD cointegrating regression," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 150-162.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hit:econdp:2005-04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Resources Section, Hitotsubashi University Library (email available below). General contact details of provider: https://edirc.repec.org/data/fehitjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.