IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1711.02184.html
   My bibliography  Save this paper

Semiparametric Estimation of Structural Functions in Nonseparable Triangular Models

Author

Listed:
  • Victor Chernozhukov
  • Iv'an Fern'andez-Val
  • Whitney Newey
  • Sami Stouli
  • Francis Vella

Abstract

Triangular systems with nonadditively separable unobserved heterogeneity provide a theoretically appealing framework for the modelling of complex structural relationships. However, they are not commonly used in practice due to the need for exogenous variables with large support for identification, the curse of dimensionality in estimation, and the lack of inferential tools. This paper introduces two classes of semiparametric nonseparable triangular models that address these limitations. They are based on distribution and quantile regression modelling of the reduced form conditional distributions of the endogenous variables. We show that average, distribution and quantile structural functions are identified in these systems through a control function approach that does not require a large support condition. We propose a computationally attractive three-stage procedure to estimate the structural functions where the first two stages consist of quantile or distribution regressions. We provide asymptotic theory and uniform inference methods for each stage. In particular, we derive functional central limit theorems and bootstrap functional central limit theorems for the distribution regression estimators of the structural functions. These results establish the validity of the bootstrap for three-stage estimators of structural functions, and lead to simple inference algorithms. We illustrate the implementation and applicability of all our methods with numerical simulations and an empirical application to demand analysis.

Suggested Citation

  • Victor Chernozhukov & Iv'an Fern'andez-Val & Whitney Newey & Sami Stouli & Francis Vella, 2017. "Semiparametric Estimation of Structural Functions in Nonseparable Triangular Models," Papers 1711.02184, arXiv.org, revised Oct 2019.
  • Handle: RePEc:arx:papers:1711.02184
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1711.02184
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, September.
    2. J. P. Florens & J. J. Heckman & C. Meghir & E. Vytlacil, 2008. "Identification of Treatment Effects Using Control Functions in Models With Continuous, Endogenous Treatment and Heterogeneous Effects," Econometrica, Econometric Society, vol. 76(5), pages 1191-1206, September.
    3. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    4. Victor Chernozhukov & Iván Fernández-Val & Blaise Melly & Kaspar Wüthrich, 2020. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 123-137, January.
    5. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    7. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    8. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    9. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    10. Jun, Sung Jae, 2009. "Local structural quantile effects in a model with a nonseparable control variable," Journal of Econometrics, Elsevier, vol. 151(1), pages 82-97, July.
    11. Fernández-Val, Ivan & van Vuuren, Aico & Vella, Francis, 2024. "Nonseparable sample selection models with censored selection rules," Journal of Econometrics, Elsevier, vol. 240(2).
    12. Newey, Whitney & Stouli, Sami, 2021. "Control variables, discrete instruments, and identification of structural functions," Journal of Econometrics, Elsevier, vol. 222(1), pages 73-88.
    13. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    14. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 655-679.
    15. Victor Chernozhukov & Iván Fernández‐Val & Whitney Newey & Sami Stouli & Francis Vella, 2020. "Semiparametric estimation of structural functions in nonseparable triangular models," Quantitative Economics, Econometric Society, vol. 11(2), pages 503-533, May.
    16. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    17. Garen, John, 1984. "The Returns to Schooling: A Selectivity Bias Approach with a Continuous Choice Variable," Econometrica, Econometric Society, vol. 52(5), pages 1199-1218, September.
    18. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    19. V. Chernozhukov & C. Hansen, 2013. "Quantile Models with Endogeneity," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 57-81, May.
    20. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    21. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
    22. Jeffrey M. Wooldridge, 2015. "Control Function Methods in Applied Econometrics," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 420-445.
    23. Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
    24. Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and probability curves without crossing," CeMMAP working papers CWP10/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    25. Fernández-Val, Iván & van Vuuren, Aico & Vella, Francis, 2018. "Nonseparable Sample Selection Models with Censored Selection Rules: An Application to Wage Decompositions," IZA Discussion Papers 11294, Institute of Labor Economics (IZA).
    26. Alexander Torgovitsky, 2015. "Identification of Nonseparable Models Using Instruments With Small Support," Econometrica, Econometric Society, vol. 83(3), pages 1185-1197, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Romuald Meango & Esther Mirjam Girsberger, 2023. "Identification of Ex ante Returns Using Elicited Choice Probabilities: an Application to Preferences for Public-sector Jobs," Papers 2303.03009, arXiv.org, revised Jun 2024.
    2. Ying-Ying Lee, 2018. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Papers 1811.00157, arXiv.org.
    3. Victor Chernozhukov & Iván Fernández‐Val & Whitney Newey & Sami Stouli & Francis Vella, 2020. "Semiparametric estimation of structural functions in nonseparable triangular models," Quantitative Economics, Econometric Society, vol. 11(2), pages 503-533, May.
    4. Fernández-Val, Ivan & van Vuuren, Aico & Vella, Francis, 2024. "Nonseparable sample selection models with censored selection rules," Journal of Econometrics, Elsevier, vol. 240(2).
    5. Whitney K. Newey & Sami Stouli, 2018. "Heterogenous Coefficients, Discrete Instruments, and Identification of Treatment Effects," Papers 1811.09837, arXiv.org.
    6. Christian Gische & Manuel C. Voelkle, 2022. "Beyond the Mean: A Flexible Framework for Studying Causal Effects Using Linear Models," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 868-901, September.
    7. Richard Spady & Sami Stouli, 2020. "Gaussian Transforms Modeling and the Estimation of Distributional Regression Functions," Papers 2011.06416, arXiv.org.
    8. Bruneel-Zupanc, Christophe Alain, 2021. "Discrete-Continuous Dynamic Choice Models: Identification and Conditional Choice Probability Estimation," TSE Working Papers 21-1185, Toulouse School of Economics (TSE).
    9. Nir Billfeld & Moshe Kim, 2024. "Context-dependent Causality (the Non-Nonotonic Case)," Papers 2404.05021, arXiv.org.
    10. Nagasawa, Kenichi, 2020. "Identification and Estimation of Group-Level Partial Effects," The Warwick Economics Research Paper Series (TWERPS) 1243, University of Warwick, Department of Economics.
    11. Newey, Whitney & Stouli, Sami, 2021. "Control variables, discrete instruments, and identification of structural functions," Journal of Econometrics, Elsevier, vol. 222(1), pages 73-88.
    12. Iv'an Fern'andez-Val & Franco Peracchi & Aico van Vuuren & Francis Vella, 2018. "Selection and the Distribution of Female Hourly Wages in the U.S," Papers 1901.00419, arXiv.org, revised Jan 2022.
    13. Iván Fernández‐Val & Aico van Vuuren & Francis Vella & Franco Peracchi, 2023. "Selection and the distribution of female real hourly wages in the United States," Quantitative Economics, Econometric Society, vol. 14(2), pages 571-607, May.
    14. Jayeeta Bhattacharya, 2020. "Quantile regression with generated dependent variable and covariates," Papers 2012.13614, arXiv.org.
    15. Tadao Hoshino, 2021. "Estimating a Continuous Treatment Model with Spillovers: A Control Function Approach," Papers 2112.15114, arXiv.org, revised Jan 2023.
    16. Jonas Meier, 2020. "Multivariate Distribution Regression," Diskussionsschriften dp2023, Universitaet Bern, Departement Volkswirtschaft.
    17. Romauld Méango, 2023. "Identification of ex ante returns using elicited choice probabilities," Economics Series Working Papers 1007, University of Oxford, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.
    3. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    4. Fernández-Val, Ivan & van Vuuren, Aico & Vella, Francis, 2024. "Nonseparable sample selection models with censored selection rules," Journal of Econometrics, Elsevier, vol. 240(2).
    5. Santiago Pereda Fernández, 2016. "Estimation of counterfactual distributions with a continuous endogenous treatment," Temi di discussione (Economic working papers) 1053, Bank of Italy, Economic Research and International Relations Area.
    6. Newey, Whitney & Stouli, Sami, 2021. "Control variables, discrete instruments, and identification of structural functions," Journal of Econometrics, Elsevier, vol. 222(1), pages 73-88.
    7. Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
    8. Jayeeta Bhattacharya, 2020. "Quantile regression with generated dependent variable and covariates," Papers 2012.13614, arXiv.org.
    9. Jun, Sung Jae, 2009. "Local structural quantile effects in a model with a nonseparable control variable," Journal of Econometrics, Elsevier, vol. 151(1), pages 82-97, July.
    10. Hiroaki Kaido & Kaspar Wüthrich, 2021. "Decentralization estimators for instrumental variable quantile regression models," Quantitative Economics, Econometric Society, vol. 12(2), pages 443-475, May.
    11. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    12. Matzkin, Rosa L., 2016. "On independence conditions in nonseparable models: Observable and unobservable instruments," Journal of Econometrics, Elsevier, vol. 191(2), pages 302-311.
    13. Romuald Meango & Esther Mirjam Girsberger, 2023. "Identification of Ex ante Returns Using Elicited Choice Probabilities: an Application to Preferences for Public-sector Jobs," Papers 2303.03009, arXiv.org, revised Jun 2024.
    14. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    15. Christina Christou & Ruthira Naraidoo & Rangan Gupta & Won Joong Kim, 2018. "Monetary Policy Reaction Functions of the TICKs: A Quantile Regression Approach," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(15), pages 3552-3565, December.
    16. Nagasawa, Kenichi, 2020. "Identification and Estimation of Group-Level Partial Effects," The Warwick Economics Research Paper Series (TWERPS) 1243, University of Warwick, Department of Economics.
    17. Kaspar W thrich, 2015. "Semiparametric estimation of quantile treatment effects with endogeneity," Diskussionsschriften dp1509, Universitaet Bern, Departement Volkswirtschaft.
    18. Pallab Ghosh & Kevin Grier & Jaeho Kim, 2021. "Heterogeneous endogeneity," Statistical Papers, Springer, vol. 62(2), pages 847-886, April.
    19. Lee, Sokbae, 2007. "Endogeneity in quantile regression models: A control function approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
    20. Romauld Méango, 2023. "Identification of ex ante returns using elicited choice probabilities," Economics Series Working Papers 1007, University of Oxford, Department of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.02184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.