IDEAS home Printed from https://ideas.repec.org/p/pai/wpaper/15-14.html
   My bibliography  Save this paper

Identifying treatment effects and counterfactual distributions using data combination with unobserved heterogeneity

Author

Listed:
  • Pablo Lavado

    (Universidad del Pacífico)

  • Gonzalo Rivera

    (Universidad del Pacífico)

Abstract

This paper considers identification of treatment effects when the outcome variables and covari-ates are not observed in the same data sets. Ecological inference models, where aggregate out-come information is combined with individual demographic information, are a common example of these situations. In this context, the counterfactual distributions and the treatment effects are not point identified. However, recent results provide bounds to partially identify causal effects. Unlike previous works, this paper adopts the selection on unobservables assumption, which means that randomization of treatment assignments is not achieved until time fixed unobserved heterogeneity is controlled for. Panel data models linear in the unobserved components are con-sidered to achieve identification. To assess the performance of these bounds, this paper provides a simulation exercise.

Suggested Citation

  • Pablo Lavado & Gonzalo Rivera, 2015. "Identifying treatment effects and counterfactual distributions using data combination with unobserved heterogeneity," Working Papers 15-14, Centro de Investigación, Universidad del Pacífico.
  • Handle: RePEc:pai:wpaper:15-14
    as

    Download full text from publisher

    File URL: http://repositorio.up.edu.pe/bitstream/handle/11354/1090/LavadoPablo-2015.pdf?sequence=1&isAllowed=y
    File Function: Application/pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    2. Lawrence M. Kahn, 2007. "The Impact of Employment Protection Mandates on Demographic Temporary Employment Patterns: International Microeconomic Evidence," Economic Journal, Royal Economic Society, vol. 117(521), pages 333-356, June.
    3. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    4. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    5. Lillard, Lee A & Willis, Robert J, 1978. "Dynamic Aspects of Earning Mobility," Econometrica, Econometric Society, vol. 46(5), pages 985-1012, September.
    6. Christoph Rothe, 2012. "Partial Distributional Policy Effects," Econometrica, Econometric Society, vol. 80(5), pages 2269-2301, September.
    7. Ridder, Geert & Moffitt, Robert, 2007. "The Econometrics of Data Combination," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 75 Elsevier.
    8. Sung Jae Jun & Yoonseok Lee & Youngki Shin, 2016. "Treatment Effects With Unobserved Heterogeneity: A Set Identification Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 302-311, April.
    9. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 487-535.
    10. Lee, Myoung-jae, 2005. "Micro-Econometrics for Policy, Program and Treatment Effects," OUP Catalogue, Oxford University Press, number 9780199267699.
    11. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    12. Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-235, April.
    13. Fan, Yanqin & Park, Sang Soo, 2009. "Partial identification of the distribution of treatment effects and its confidence sets," MPRA Paper 37148, University Library of Munich, Germany.
    14. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    15. Fan, Yanqin & Park, Sang Soo, 2010. "Sharp Bounds On The Distribution Of Treatment Effects And Their Statistical Inference," Econometric Theory, Cambridge University Press, vol. 26(03), pages 931-951, June.
    16. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    17. Yanqin Fan & Robert Sherman & Matthew Shum, 2014. "Identifying Treatment Effects Under Data Combination," Econometrica, Econometric Society, vol. 82(2), pages 811-822, March.
    18. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," Review of Economic Studies, Oxford University Press, vol. 72(1), pages 1-19.
    19. Fan, Yanqin & Park, Sang Soo, 2012. "Confidence intervals for the quantile of treatment effects in randomized experiments," Journal of Econometrics, Elsevier, vol. 167(2), pages 330-344.
    20. Lechner, Michael, 2013. "Treatment effects and panel data," Economics Working Paper Series 1314, University of St. Gallen, School of Economics and Political Science.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pai:wpaper:15-14. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Giit). General contact details of provider: http://edirc.repec.org/data/deiuppe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.