IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v236y2023i2s0304407623002117.html
   My bibliography  Save this article

Treatment effect models with strategic interaction in treatment decisions

Author

Listed:
  • Hoshino, Tadao
  • Yanagi, Takahide

Abstract

This study considers treatment effect models in which others’ treatment decisions can affect both one’s own treatment and outcome. Focusing on the case of two-player interactions, we formulate treatment decision behavior as a complete information game with multiple equilibria. Using a latent index framework and assuming a stochastic equilibrium selection, we prove that the marginal treatment effect from one’s own treatment and that from the partner are identifiable on the conditional supports of certain threshold variables determined through the game model. Based on our constructive identification results, we propose a two-step semiparametric procedure for estimating the marginal treatment effects using series approximation. We show that the proposed estimator is uniformly consistent and asymptotically normally distributed. As an empirical illustration, we investigate the impacts of risky behaviors on adolescents’ academic performance.

Suggested Citation

  • Hoshino, Tadao & Yanagi, Takahide, 2023. "Treatment effect models with strategic interaction in treatment decisions," Journal of Econometrics, Elsevier, vol. 236(2).
  • Handle: RePEc:eee:econom:v:236:y:2023:i:2:s0304407623002117
    DOI: 10.1016/j.jeconom.2023.105495
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407623002117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2023.105495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter Kooreman & Adriaan R. Soetevent, 2007. "A discrete-choice model with social interactions: with an application to high school teen behavior," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 599-624.
    2. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    3. Federico Ciliberto & Elie Tamer, 2009. "Market Structure and Multiple Equilibria in Airline Markets," Econometrica, Econometric Society, vol. 77(6), pages 1791-1828, November.
    4. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    5. Susanne M. Schennach & Daniel Wilhelm, 2017. "A Simple Parametric Model Selection Test," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1663-1674, October.
    6. David Card & Laura Giuliano, 2013. "Peer Effects and Multiple Equilibria in the Risky Behavior of Friends," The Review of Economics and Statistics, MIT Press, vol. 95(4), pages 1130-1149, October.
    7. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    8. Marc Ferracci & Gr�gory Jolivet & Gerard J. van den Berg, 2014. "Evidence of Treatment Spillovers Within Markets," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 812-823, December.
    9. Hoshino Tadao & Yanagi Takahide, 2022. "Estimating marginal treatment effects under unobserved group heterogeneity," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 197-216, January.
    10. Paul Goldsmith-Pinkham & Guido W. Imbens, 2013. "Social Networks and the Identification of Peer Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 253-264, July.
    11. Edward Vytlacil, 2006. "Ordered Discrete-Choice Selection Models and Local Average Treatment Effect Assumptions: Equivalence, Nonequivalence, and Representation Results," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 578-581, August.
    12. Ida Johnsson & Hyungsik Roger Moon, 2021. "Estimation of Peer Effects in Endogenous Social Networks: Control Function Approach," The Review of Economics and Statistics, MIT Press, vol. 103(2), pages 328-345, May.
    13. Kline, Brendan, 2015. "Identification of complete information games," Journal of Econometrics, Elsevier, vol. 189(1), pages 117-131.
    14. Christian N. Brinch & Magne Mogstad & Matthew Wiswall, 2017. "Beyond LATE with a Discrete Instrument," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 985-1039.
    15. Lee, Sokbae, 2007. "Endogeneity in quantile regression models: A control function approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
    16. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    17. Klein, Tobias J., 2010. "Heterogeneous treatment effects: Instrumental variables without monotonicity?," Journal of Econometrics, Elsevier, vol. 155(2), pages 99-116, April.
    18. Xiaohong Chen & Timothy M. Christensen, 2018. "Optimal sup‐norm rates and uniform inference on nonlinear functionals of nonparametric IV regression," Quantitative Economics, Econometric Society, vol. 9(1), pages 39-84, March.
    19. Arthur Lewbel, 2007. "Coherency And Completeness Of Structural Models Containing A Dummy Endogenous Variable," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1379-1392, November.
    20. Áureo de Paula & Xun Tang, 2012. "Inference of Signs of Interaction Effects in Simultaneous Games With Incomplete Information," Econometrica, Econometric Society, vol. 80(1), pages 143-172, January.
    21. Hong, Guanglei & Raudenbush, Stephen W., 2006. "Evaluating Kindergarten Retention Policy: A Case Study of Causal Inference for Multilevel Observational Data," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 901-910, September.
    22. Shakeeb Khan & Elie Tamer, 2010. "Irregular Identification, Support Conditions, and Inverse Weight Estimation," Econometrica, Econometric Society, vol. 78(6), pages 2021-2042, November.
    23. Chen, Xiaohong & Christensen, Timothy M., 2015. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," Journal of Econometrics, Elsevier, vol. 188(2), pages 447-465.
    24. Berry, Steven T, 1992. "Estimation of a Model of Entry in the Airline Industry," Econometrica, Econometric Society, vol. 60(4), pages 889-917, July.
    25. Anirban Basu & James J. Heckman & Salvador Navarro‐Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self‐selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157, November.
    26. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    27. Andrew Chesher & Adam Rosen, 2012. "Simultaneous equations for discrete outcomes: coherence, completeness, and identification," CeMMAP working papers CWP21/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    28. Whitney K. Newey, 2009. "Two-step series estimation of sample selection models," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 217-229, January.
    29. Cattaneo, Matias D. & Farrell, Max H., 2013. "Optimal convergence rates, Bahadur representation, and asymptotic normality of partitioning estimators," Journal of Econometrics, Elsevier, vol. 174(2), pages 127-143.
    30. Patrick Bajari & Han Hong & Stephen P. Ryan, 2010. "Identification and Estimation of a Discrete Game of Complete Information," Econometrica, Econometric Society, vol. 78(5), pages 1529-1568, September.
    31. Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2018. "Using Instrumental Variables for Inference About Policy Relevant Treatment Parameters," Econometrica, Econometric Society, vol. 86(5), pages 1589-1619, September.
    32. Shakeeb Khan & Denis Nekipelov, 2018. "Information structure and statistical information in discrete response models," Quantitative Economics, Econometric Society, vol. 9(2), pages 995-1017, July.
    33. Kooreman, Peter, 1994. "Estimation of Econometric Models of Some Discrete Games," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(3), pages 255-268, July-Sept.
    34. James J. Heckman & Rodrigo Pinto, 2018. "Unordered Monotonicity," Econometrica, Econometric Society, vol. 86(1), pages 1-35, January.
    35. Yu‐Chin Hsu & Xiaoxia Shi, 2017. "Model‐selection tests for conditional moment restriction models," Econometrics Journal, Royal Economic Society, vol. 20(1), pages 52-85, February.
    36. Jun, Sung Jae & Pinkse, Joris, 2020. "Counterfactual prediction in complete information games: Point prediction under partial identification," Journal of Econometrics, Elsevier, vol. 216(2), pages 394-429.
    37. Timothy F. Bresnahan & Peter C. Reiss, 1990. "Entry in Monopoly Market," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(4), pages 531-553.
    38. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    39. Markus Frölich & Martin Huber, 2017. "Direct and indirect treatment effects–causal chains and mediation analysis with instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1645-1666, November.
    40. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    41. Chih‐Sheng Hsieh & Hans van Kippersluis, 2018. "Smoking initiation: Peers and personality," Quantitative Economics, Econometric Society, vol. 9(2), pages 825-863, July.
    42. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    43. Elie Tamer, 2003. "Incomplete Simultaneous Discrete Response Model with Multiple Equilibria," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(1), pages 147-165.
    44. Felfe, Christina & Lalive, Rafael, 2018. "Does early child care affect children's development?," Journal of Public Economics, Elsevier, vol. 159(C), pages 33-53.
    45. Lung-fei Lee & Ji Li & Xu Lin, 2014. "Binary Choice Models with Social Network under Heterogeneous Rational Expectations," The Review of Economics and Statistics, MIT Press, vol. 96(3), pages 402-417, July.
    46. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    47. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015. "Some new asymptotic theory for least squares series: Pointwise and uniform results," Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.
    48. Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.
    49. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157.
    50. Áureo de Paula, 2013. "Econometric Analysis of Games with Multiple Equilibria," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 107-131, May.
    51. Eisenberg, Daniel & Golberstein, Ezra & Whitlock, Janis L., 2014. "Peer effects on risky behaviors: New evidence from college roommate assignments," Journal of Health Economics, Elsevier, vol. 33(C), pages 126-138.
    52. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    53. Gerber, Alan, 1998. "Estimating the Effect of Campaign Spending on Senate Election Outcomes Using Instrumental Variables," American Political Science Review, Cambridge University Press, vol. 92(2), pages 401-411, June.
    54. Brendan Kline, 2016. "The empirical content of games with bounded regressors," Quantitative Economics, Econometric Society, vol. 7(1), pages 37-81, March.
    55. Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
    56. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: An application in breast cancer patients," Health, Econometrics and Data Group (HEDG) Working Papers 07/07, HEDG, c/o Department of Economics, University of York.
    57. Han, Sukjin & Vytlacil, Edward J., 2017. "Identification in a generalization of bivariate probit models with dummy endogenous regressors," Journal of Econometrics, Elsevier, vol. 199(1), pages 63-73.
    58. Jungyoon Lee & Peter Robinson, 2016. "Series estimation under cross-sectional dependence," LSE Research Online Documents on Economics 63380, London School of Economics and Political Science, LSE Library.
    59. Aradillas-Lopez, Andres, 2010. "Semiparametric estimation of a simultaneous game with incomplete information," Journal of Econometrics, Elsevier, vol. 157(2), pages 409-431, August.
    60. Jorge Balat & Sukjin Han, 2018. "Multiple Treatments with Strategic Interaction," Papers 1805.08275, arXiv.org, revised Sep 2019.
    61. Balat, Jorge F. & Han, Sukjin, 2023. "Multiple treatments with strategic substitutes," Journal of Econometrics, Elsevier, vol. 234(2), pages 732-757.
    62. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    63. Andrew Chesher & Adam Rosen, 2020. "Structural modeling of simultaneous discrete choice," CeMMAP working papers CWP9/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    64. Chih‐Sheng Hsieh & Lung Fei Lee, 2016. "A Social Interactions Model with Endogenous Friendship Formation and Selectivity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 301-319, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoshino Tadao & Yanagi Takahide, 2022. "Estimating marginal treatment effects under unobserved group heterogeneity," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 197-216, January.
    2. Tadao Hoshino, 2020. "A Pairwise Strategic Network Formation Model with Group Heterogeneity: With an Application to International Travel," Papers 2012.14886, arXiv.org, revised Feb 2021.
    3. Tadao Hoshino, 2021. "Estimating a Continuous Treatment Model with Spillovers: A Control Function Approach," Papers 2112.15114, arXiv.org, revised Jan 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Nianqing & Vuong, Quang & Xu, Haiqing, 2017. "Rationalization and identification of binary games with correlated types," Journal of Econometrics, Elsevier, vol. 201(2), pages 249-268.
    2. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    3. Kline, Brendan, 2015. "Identification of complete information games," Journal of Econometrics, Elsevier, vol. 189(1), pages 117-131.
    4. Tadao Hoshino, 2020. "A Pairwise Strategic Network Formation Model with Group Heterogeneity: With an Application to International Travel," Papers 2012.14886, arXiv.org, revised Feb 2021.
    5. Balat, Jorge F. & Han, Sukjin, 2023. "Multiple treatments with strategic substitutes," Journal of Econometrics, Elsevier, vol. 234(2), pages 732-757.
    6. Lin, Zhongjian & Hu, Yingyao, 2024. "Binary choice with misclassification and social interactions, with an application to peer effects in attitude," Journal of Econometrics, Elsevier, vol. 238(1).
    7. Gerten, Elisa & Beckmann, Michael & Kräkel, Matthias, 2022. "Information and Communication Technology, Hierarchy, and Job Design," IZA Discussion Papers 15491, Institute of Labor Economics (IZA).
    8. Li, Chunxiao & Gilleskie, Donna B., 2021. "The influence of endogenous behaviors among social pairs: Social interaction effects of smoking," Journal of Health Economics, Elsevier, vol. 80(C).
    9. Han, Sukjin & Yang, Shenshen, 2024. "A computational approach to identification of treatment effects for policy evaluation," Journal of Econometrics, Elsevier, vol. 240(1).
    10. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    11. Thomas M. Russell, 2020. "Policy Transforms and Learning Optimal Policies," Papers 2012.11046, arXiv.org.
    12. Francesca Molinari, 2020. "Microeconometrics with Partial Identification," Papers 2004.11751, arXiv.org.
    13. Lewbel, Arthur & Tang, Xun, 2015. "Identification and estimation of games with incomplete information using excluded regressors," Journal of Econometrics, Elsevier, vol. 189(1), pages 229-244.
    14. Dunker, Fabian & Hoderlein, Stefan & Kaido, Hiroaki & Sherman, Robert, 2018. "Nonparametric identification of the distribution of random coefficients in binary response static games of complete information," Journal of Econometrics, Elsevier, vol. 206(1), pages 83-102.
    15. Jeremy Fox & Natalia Lazzati, 2013. "Identification of discrete choice models for bundles and binary games," CeMMAP working papers 04/13, Institute for Fiscal Studies.
    16. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    17. Lin, Zhongjian & Vella, Francis, 2021. "Selection and Endogenous Treatment Models with Social Interactions: An Application to the Impact of Exercise on Self-Esteem," IZA Discussion Papers 14167, Institute of Labor Economics (IZA).
    18. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    19. Nianqing Liu & Quang Vuong & Haiqing Xu, 2012. "Rationalization and Identification of Discrete Games with Correlated Types," Department of Economics Working Papers 130915, The University of Texas at Austin, Department of Economics.
    20. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Keywords

    Binary games; Latent index models; Marginal treatment effects; Series estimation; Strategic interaction;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C57 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Econometrics of Games and Auctions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:236:y:2023:i:2:s0304407623002117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.