IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Simultaneous equations for discrete outcomes: coherence, completeness, and identification

  • Andrew Chesher

    ()

    (Institute for Fiscal Studies and cemmap and UCL)

  • Adam Rosen

    ()

    (Institute for Fiscal Studies and cemmap and UCL)

This paper studies simultaneous equations models for two or more discrete outcomes. These models may be incoherent, delivering no values of the outcomes at certain values of the latent variables and covariates, and they may be incomplete, delivering more than one value of the outcomes at certain values of the covariates and latent variates. We revisit previous approaches to the problems of incompleteness and incoherence in such models, and we propose a new approach for dealing with these. For each approach, we use random set theory to characterize sharp identification regions for the marginal distribution of latent variables and the structural function relating outcomes to covariates, illustrating the relative identifying power and tradeoffs of the different approaches. We show that these identified sets are characterized by systems of conditional moment equalities and inequalities, and we provide a generically applicable algorithm for constructing these. We demonstrate these results for the simultaneous equations model for binary outcomes studied in for example Heckman (1978) and Tamer (2003) and the triangular model with a discrete endogenous variable studied in Chesher (2005) and Jun, Pinkse, and Xu (2011) as illustrative examples.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cemmap.ac.uk/wps/cwp211212.pdf
Download Restriction: no

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP21/12.

as
in new window

Length:
Date of creation: Aug 2012
Date of revision:
Handle: RePEc:ifs:cemmap:21/12
Contact details of provider: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Web page: http://cemmap.ifs.org.uk
Email:


More information through EDIRC

Order Information: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, 03.
  2. Kline, Brendan & Tamer, Elie, 2012. "Bounds for best response functions in binary games," Journal of Econometrics, Elsevier, vol. 166(1), pages 92-105.
  3. Elie Tamer & Federico Ciliberto, 2004. "Market Structure and Multiple Equilibria in Airline Markets," 2004 Meeting Papers 52, Society for Economic Dynamics.
  4. Patrick Bajari & Han Hong & Stephen Ryan, 2004. "Identification and Estimation of Discrete Games of Complete Information," NBER Technical Working Papers 0301, National Bureau of Economic Research, Inc.
  5. Aradillas-Lopez, Andres & Tamer, Elie, 2008. "The Identification Power of Equilibrium in Simple Games," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 261-310.
  6. Arie Beresteanu & Ilya Molchanov & Francesca Molinari, 2011. "Sharp Identification Regions in Models With Convex Moment Predictions," Econometrica, Econometric Society, vol. 79(6), pages 1785-1821, November.
  7. Andrew Chesher & Adam Rosen & Konrad Smolinski, 2011. "An instrumental variable model of multiple discrete choice," CeMMAP working papers CWP39/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  8. Jun, Sung Jae & Pinkse, Joris & Xu, Haiqing, 2011. "Tighter bounds in triangular systems," Journal of Econometrics, Elsevier, vol. 161(2), pages 122-128, April.
  9. Bresnahan, Timothy F. & Reiss, Peter C., 1991. "Empirical models of discrete games," Journal of Econometrics, Elsevier, vol. 48(1-2), pages 57-81.
  10. Blundell, Richard & Smith, Richard J., 1994. "Coherency and estimation in simultaneous models with censored or qualitative dependent variables," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 355-373.
  11. repec:oup:restud:v:78:y::i:4:p:1264-1298 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:21/12. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benita Rajania)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.