IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.13861.html
   My bibliography  Save this paper

A Computational Approach to Identification of Treatment Effects for Policy Evaluation

Author

Listed:
  • Sukjin Han
  • Shenshen Yang

Abstract

For counterfactual policy evaluation, it is important to ensure that treatment parameters are relevant to policies in question. This is especially challenging under unobserved heterogeneity, as is well featured in the definition of the local average treatment effect (LATE). Being intrinsically local, the LATE is known to lack external validity in counterfactual environments. This paper investigates the possibility of extrapolating local treatment effects to different counterfactual settings when instrumental variables are only binary. We propose a novel framework to systematically calculate sharp nonparametric bounds on various policy-relevant treatment parameters that are defined as weighted averages of the marginal treatment effect (MTE). Our framework is flexible enough to fully incorporate statistical independence (rather than mean independence) of instruments and a large menu of identifying assumptions beyond the shape restrictions on the MTE that have been considered in prior studies. We apply our method to understand the effects of medical insurance policies on the use of medical services.

Suggested Citation

  • Sukjin Han & Shenshen Yang, 2020. "A Computational Approach to Identification of Treatment Effects for Policy Evaluation," Papers 2009.13861, arXiv.org, revised Aug 2023.
  • Handle: RePEc:arx:papers:2009.13861
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.13861
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    2. Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2017. "Using Instrumental Variables for Inference about Policy Relevant Treatment Effects," NBER Working Papers 23568, National Bureau of Economic Research, Inc.
    3. Rajeev Dehejia & Cristian Pop-Eleches & Cyrus Samii, 2021. "From Local to Global: External Validity in a Fertility Natural Experiment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 217-243, January.
    4. Bo E. Honoré & Adriana Lleras-Muney, 2006. "Bounds in Competing Risks Models and the War on Cancer," Econometrica, Econometric Society, vol. 74(6), pages 1675-1698, November.
    5. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    6. Charles F. Manski, 1997. "Monotone Treatment Response," Econometrica, Econometric Society, vol. 65(6), pages 1311-1334, November.
    7. James J. Heckman, 2010. "Building Bridges between Structural and Program Evaluation Approaches to Evaluating Policy," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 356-398, June.
    8. Sukjin Han & Sungwon Lee, 2019. "Estimation in a generalization of bivariate probit models with dummy endogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 994-1015, September.
    9. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    10. Sukjin Han, 2020. "Nonparametric estimation of triangular simultaneous equations models under weak identification," Quantitative Economics, Econometric Society, vol. 11(1), pages 161-202, January.
    11. Magne Mogstad & Alexander Torgovitsky & Christopher R. Walters, 2021. "The Causal Interpretation of Two-Stage Least Squares with Multiple Instrumental Variables," American Economic Review, American Economic Association, vol. 111(11), pages 3663-3698, November.
    12. Dorothy D. Dunlop & Larry M. Manheim & Jing Song & Rowland W. Chang, 2002. "Gender and Ethnic/Racial Disparities in Health Care Utilization Among Older Adults," The Journals of Gerontology: Series B, The Gerontological Society of America, vol. 57(4), pages 221-233.
    13. Philipp Eisenhauer & James J. Heckman & Edward Vytlacil, 2015. "The Generalized Roy Model and the Cost-Benefit Analysis of Social Programs," Journal of Political Economy, University of Chicago Press, vol. 123(2), pages 413-443.
    14. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    15. Han, Sukjin, 2021. "Identification in nonparametric models for dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 132-147.
    16. Christian N. Brinch & Magne Mogstad & Matthew Wiswall, 2017. "Beyond LATE with a Discrete Instrument," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 985-1039.
    17. Arie Beresteanu & Ilya Molchanov & Francesca Molinari, 2011. "Sharp Identification Regions in Models With Convex Moment Predictions," Econometrica, Econometric Society, vol. 79(6), pages 1785-1821, November.
    18. Xiaohong Chen & Timothy M. Christensen, 2018. "Optimal sup‐norm rates and uniform inference on nonlinear functionals of nonparametric IV regression," Quantitative Economics, Econometric Society, vol. 9(1), pages 39-84, March.
    19. Hsieh, Yu-Wei & Shi, Xiaoxia & Shum, Matthew, 2022. "Inference on estimators defined by mathematical programming," Journal of Econometrics, Elsevier, vol. 226(2), pages 248-268.
    20. Bo E. Honoré & Elie Tamer, 2006. "Bounds on Parameters in Panel Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 74(3), pages 611-629, May.
    21. Karthik Muralidharan & Abhijeet Singh & Alejandro J. Ganimian, 2019. "Disrupting Education? Experimental Evidence on Technology-Aided Instruction in India," American Economic Review, American Economic Association, vol. 109(4), pages 1426-1460, April.
    22. Machado, Cecilia & Shaikh, Azeem M. & Vytlacil, Edward J., 2019. "Instrumental variables and the sign of the average treatment effect," Journal of Econometrics, Elsevier, vol. 212(2), pages 522-555.
    23. Rahul Deb & Yuichi Kitamura & John K H Quah & Jörg Stoye, 2023. "Revealed Price Preference: Theory and Empirical Analysis," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(2), pages 707-743.
    24. Alexander Torgovitsky, 2019. "Nonparametric Inference on State Dependence in Unemployment," Econometrica, Econometric Society, vol. 87(5), pages 1475-1505, September.
    25. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    26. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    27. Azeem M. Shaikh & Edward J. Vytlacil, 2011. "Partial Identification in Triangular Systems of Equations With Binary Dependent Variables," Econometrica, Econometric Society, vol. 79(3), pages 949-955, May.
    28. Amy Finkelstein & Sarah Taubman & Bill Wright & Mira Bernstein & Jonathan Gruber & Joseph P. Newhouse & Heidi Allen & Katherine Baicker, 2012. "The Oregon Health Insurance Experiment: Evidence from the First Year," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(3), pages 1057-1106.
    29. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    30. Jay Bhattacharya & Azeem M. Shaikh & Edward Vytlacil, 2008. "Treatment Effect Bounds under Monotonicity Assumptions: An Application to Swan-Ganz Catheterization," American Economic Review, American Economic Association, vol. 98(2), pages 351-356, May.
    31. Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2018. "Using Instrumental Variables for Inference About Policy Relevant Treatment Parameters," Econometrica, Econometric Society, vol. 86(5), pages 1589-1619, September.
    32. Matthew A. Masten & Alexandre Poirier, 2021. "Salvaging Falsified Instrumental Variable Models," Econometrica, Econometric Society, vol. 89(3), pages 1449-1469, May.
    33. Edward Vytlacil & Nese Yildiz, 2007. "Dummy Endogenous Variables in Weakly Separable Models," Econometrica, Econometric Society, vol. 75(3), pages 757-779, May.
    34. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    35. Jiaying Gu & Thomas M. Russell, 2021. "Partial Identification in Nonseparable Binary Response Models with Endogenous Regressors," Papers 2101.01254, arXiv.org, revised Jul 2022.
    36. Hurd, Michael D. & McGarry, Kathleen, 1997. "Medical insurance and the use of health care services by the elderly," Journal of Health Economics, Elsevier, vol. 16(2), pages 129-154, April.
    37. Thomas M. Russell, 2021. "Sharp Bounds on Functionals of the Joint Distribution in the Analysis of Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 532-546, March.
    38. Shenglong Liu & Ismael Mourifié & Yuanyuan Wan, 2020. "Two-way exclusion restrictions in models with heterogeneous treatment effects," The Econometrics Journal, Royal Economic Society, vol. 23(3), pages 345-362.
    39. Firpo, Sergio & Ridder, Geert, 2019. "Partial identification of the treatment effect distribution and its functionals," Journal of Econometrics, Elsevier, vol. 213(1), pages 210-234.
    40. Alexander Torgovitsky, 2019. "Partial identification by extending subdistributions," Quantitative Economics, Econometric Society, vol. 10(1), pages 105-144, January.
    41. Han, Sukjin & Vytlacil, Edward J., 2017. "Identification in a generalization of bivariate probit models with dummy endogenous regressors," Journal of Econometrics, Elsevier, vol. 199(1), pages 63-73.
    42. Joshua Angrist & Ivan Fernandez-Val, 2010. "ExtrapoLATE-ing: External Validity and Overidentification in the LATE Framework," NBER Working Papers 16566, National Bureau of Economic Research, Inc.
    43. Freyberger, Joachim & Horowitz, Joel L., 2015. "Identification and shape restrictions in nonparametric instrumental variables estimation," Journal of Econometrics, Elsevier, vol. 189(1), pages 41-53.
    44. Quang Vuong & Haiqing Xu, 2017. "Counterfactual mapping and individual treatment effects in nonseparable models with binary endogeneity," Quantitative Economics, Econometric Society, vol. 8(2), pages 589-610, July.
    45. Xiaohong Chen & Elie Tamer & Alexander Torgovitsky, 2011. "Sensitivity Analysis in Semiparametric Likelihood Models," Cowles Foundation Discussion Papers 1836, Cowles Foundation for Research in Economics, Yale University.
    46. Chiburis, Richard C., 2010. "Semiparametric bounds on treatment effects," Journal of Econometrics, Elsevier, vol. 159(2), pages 267-275, December.
    47. Balat, Jorge F. & Han, Sukjin, 2023. "Multiple treatments with strategic substitutes," Journal of Econometrics, Elsevier, vol. 234(2), pages 732-757.
    48. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    2. Marx, Philip, 2024. "Sharp bounds in the latent index selection model," Journal of Econometrics, Elsevier, vol. 238(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Jiaying & Russell, Thomas M., 2023. "Partial identification in nonseparable binary response models with endogenous regressors," Journal of Econometrics, Elsevier, vol. 235(2), pages 528-562.
    2. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    3. Kitagawa, Toru, 2021. "The identification region of the potential outcome distributions under instrument independence," Journal of Econometrics, Elsevier, vol. 225(2), pages 231-253.
    4. Chen, Xuan & Flores, Carlos A. & Flores-Lagunes, Alfonso, 2015. "Going Beyond LATE: Bounding Average Treatment Effects of Job Corps Training," IZA Discussion Papers 9511, Institute of Labor Economics (IZA).
    5. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    6. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    8. Balat, Jorge F. & Han, Sukjin, 2023. "Multiple treatments with strategic substitutes," Journal of Econometrics, Elsevier, vol. 234(2), pages 732-757.
    9. Possebom, Vitor, 2018. "Sharp bounds on the MTE with sample selection," MPRA Paper 89785, University Library of Munich, Germany.
    10. Bhattacharya, Jay & Shaikh, Azeem M. & Vytlacil, Edward, 2012. "Treatment effect bounds: An application to Swan–Ganz catheterization," Journal of Econometrics, Elsevier, vol. 168(2), pages 223-243.
    11. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Mogstad, Magne & Torgovitsky, Alexander & Walters, Christopher R., 2024. "Policy evaluation with multiple instrumental variables," Journal of Econometrics, Elsevier, vol. 243(1).
    13. Hoshino, Tadao & Yanagi, Takahide, 2023. "Treatment effect models with strategic interaction in treatment decisions," Journal of Econometrics, Elsevier, vol. 236(2).
    14. Alexander Torgovitsky, 2019. "Partial identification by extending subdistributions," Quantitative Economics, Econometric Society, vol. 10(1), pages 105-144, January.
    15. Pietro Tebaldi & Alexander Torgovitsky & Hanbin Yang, 2023. "Nonparametric Estimates of Demand in the California Health Insurance Exchange," Econometrica, Econometric Society, vol. 91(1), pages 107-146, January.
    16. Matthew A. Masten & Alexandre Poirier, 2021. "Salvaging Falsified Instrumental Variable Models," Econometrica, Econometric Society, vol. 89(3), pages 1449-1469, May.
    17. Vitor Possebom, 2019. "Sharp Bounds for the Marginal Treatment Effect with Sample Selection," Papers 1904.08522, arXiv.org.
    18. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    19. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    20. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.13861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.