IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v212y2019i2p522-555.html
   My bibliography  Save this article

Instrumental variables and the sign of the average treatment effect

Author

Listed:
  • Machado, Cecilia
  • Shaikh, Azeem M.
  • Vytlacil, Edward J.

Abstract

This paper considers identification and inference about the sign of the average effect of a binary endogenous regressor (or treatment) on a binary outcome of interest when a binary instrument is available. In this setting, the average effect of the endogenous regressor on the outcome is sometimes referred to as the average treatment effect (ATE). We consider four different sets of assumptions: instrument exogeneity, instrument exogeneity and monotonicity on the outcome equation, instrument exogeneity and monotonicity on the equation for the endogenous regressor, or instrument exogeneity and monotonicity on both the outcome equation and the equation for the endogenous regressor. For each of these sets of conditions, we characterize when (i) the distribution of the observed data is inconsistent with the assumptions and (ii) the distribution of the observed data is consistent with the assumptions and the sign of ATE is identified. A distinguishing feature of our results is that they are stated in terms of a reduced form parameter from the population regression of the outcome on the instrument. In particular, we find that the reduced form parameter being far enough, but not too far, from zero, implies that the distribution of the observed data is consistent with our assumptions and the sign of ATE is identified, while the reduced form parameter being too far from zero implies that the distribution of the observed data is inconsistent with our assumptions. For each set of restrictions, we also develop methods for simultaneous inference about the consistency of the distribution of the observed data with our restrictions and the sign of the ATE when the distribution of the observed data is consistent with our restrictions. We show that our inference procedures are valid uniformly over a large class of possible distributions for the observed data that include distributions where the instrument is arbitrarily “weak.” A novel feature of the methodology is that the null hypotheses involve unions of moment inequalities.

Suggested Citation

  • Machado, Cecilia & Shaikh, Azeem M. & Vytlacil, Edward J., 2019. "Instrumental variables and the sign of the average treatment effect," Journal of Econometrics, Elsevier, vol. 212(2), pages 522-555.
  • Handle: RePEc:eee:econom:v:212:y:2019:i:2:p:522-555
    DOI: 10.1016/j.jeconom.2018.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407619301381
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    2. Charles F. Manski, 1997. "Monotone Treatment Response," Econometrica, Econometric Society, vol. 65(6), pages 1311-1334, November.
    3. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    4. Ivan A. Canay & Azeem M. Shaikh, 2016. "Practical and theoretical advances in inference for partially identified models," CeMMAP working papers CWP05/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Toru Kitagawa, 2015. "A Test for Instrument Validity," Econometrica, Econometric Society, vol. 83(5), pages 2043-2063, September.
    6. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    7. Jason Abrevaya & Jerry A. Hausman & Shakeeb Khan, 2010. "Testing for Causal Effects in a Generalized Regression Model With Endogenous Regressors," Econometrica, Econometric Society, vol. 78(6), pages 2043-2061, November.
    8. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    9. Chiburis, Richard C., 2010. "Semiparametric bounds on treatment effects," Journal of Econometrics, Elsevier, vol. 159(2), pages 267-275, December.
    10. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    11. Martin Huber & Giovanni Mellace, 2015. "Testing Instrument Validity for LATE Identification Based on Inequality Moment Constraints," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 398-411, May.
    12. Azeem Shaikh & Edward Vytlacil, 2005. "Threshold Crossing Models and Bounds on Treatment Effects: A Nonparametric Analysis," NBER Technical Working Papers 0307, National Bureau of Economic Research, Inc.
    13. Bhattacharya, Jay & Shaikh, Azeem M. & Vytlacil, Edward, 2012. "Treatment effect bounds: An application to Swan–Ganz catheterization," Journal of Econometrics, Elsevier, vol. 168(2), pages 223-243.
    14. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 555-574.
    15. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Average treatment effect; Endogeneity; Instrumental variables; Union of moment inequalities; Bootstrap; Uniform validity; Multiple testing; Familywise error rate; Gatekeeping;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:212:y:2019:i:2:p:522-555. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.