IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/23497.html
   My bibliography  Save this paper

Unordered Monotonicity

Author

Listed:
  • James J. Heckman
  • Rodrigo Pinto

Abstract

This paper defines and analyzes a new monotonicity condition for the identification of counterfactuals and treatment effects in unordered discrete choice models with multiple treatments, heterogenous agents and discrete-valued instruments. Unordered monotonicity implies and is implied by additive separability of choice of treatment equations in terms of observed and unobserved variables. These results follow from properties of binary matrices developed in this paper. We investigate conditions under which unordered monotonicity arises as a consequence of choice behavior. We characterize IV estimators of counterfactuals as solutions to discrete mixture problems.

Suggested Citation

  • James J. Heckman & Rodrigo Pinto, 2017. "Unordered Monotonicity," NBER Working Papers 23497, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:23497
    Note: ED TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w23497.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jason R. Blevins, 2014. "Nonparametric identification of dynamic decision processes with discrete and continuous choices," Quantitative Economics, Econometric Society, vol. 5(3), pages 531-554, November.
    2. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vishal Kamat, 2017. "Identification with Latent Choice Sets: The Case of the Head Start Impact Study," Papers 1711.02048, arXiv.org.

    More about this item

    JEL classification:

    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • C93 - Mathematical and Quantitative Methods - - Design of Experiments - - - Field Experiments
    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
    • J15 - Labor and Demographic Economics - - Demographic Economics - - - Economics of Minorities, Races, Indigenous Peoples, and Immigrants; Non-labor Discrimination

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:23497. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.