IDEAS home Printed from https://ideas.repec.org/p/hka/wpaper/20205-009.html
   My bibliography  Save this paper

An Information-Theoretic Approach to Partially Identified Problems

Author

Listed:
  • Amos Golan

    (American University and Santa Fe Institute)

  • Jeffrey Perloff

    (University of California, Berkeley)

Abstract

An information-theoretic maximum entropy (ME) model provides an alternative approach to finding solutions to partially identified models. In these models, we can identify only a solution set rather than point-identifying the parameters of interest, given our limited information. Manski (2021) proposed using statistical decision functions in general, and the minimax-regret (MMR) criterion in particular, to choose a unique solution. Using Manski's simulations for a missing data and a treatment problem, including an empirical example, we show that ME performs the same or better than MMR. In additional simulations, ME dominates various other statistical decision functions. ME has an axiomatic underpinning and is computationally efficient.

Suggested Citation

  • Amos Golan & Jeffrey Perloff, 2025. "An Information-Theoretic Approach to Partially Identified Problems," Working Papers 20205-009, Human Capital and Economic Opportunity Working Group.
  • Handle: RePEc:hka:wpaper:20205-009
    Note: MIP
    as

    Download full text from publisher

    File URL: http://humcap.uchicago.edu/RePEc/hka/wpaper/Golan_Perloff_information-theor-approach-part-ID.pdf
    File Function: First version, September 2025
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tamer, Elie, 2010. "Partial Identification in Econometrics," Scholarly Articles 34728615, Harvard University Department of Economics.
    2. Valentyn Litvin & Charles F. Manski, 2021. "Evaluating the maximum regret of statistical treatment rules with sample data on treatment response," Stata Journal, StataCorp LLC, vol. 21(1), pages 97-122, March.
    3. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    4. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    5. Jun, Sung Jae & Pinkse, Joris, 2020. "Counterfactual prediction in complete information games: Point prediction under partial identification," Journal of Econometrics, Elsevier, vol. 216(2), pages 394-429.
    6. Leamer, Edward E, 1985. "Sensitivity Analyses Would Help," American Economic Review, American Economic Association, vol. 75(3), pages 308-313, June.
    7. Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
    2. Molinari, Francesca, 2020. "Microeconometrics with partial identification," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 355-486, Elsevier.
    3. Brendan Kline & Elie Tamer, 2024. "Counterfactual Analysis in Empirical Games," Papers 2410.12731, arXiv.org.
    4. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    5. Vikesh Amin & Jere R. Behrman & Jason M. Fletcher & Carlos A. Flores & Alfonso Flores-Lagunes & Hans-Peter Kohler, 2022. "Does Schooling Improve Cognitive Abilities at Older Ages: Causal Evidence from Nonparametric Bounds," PIER Working Paper Archive 22-016, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    6. Firpo, Sergio & Galvao, Antonio F. & Kobus, Martyna & Parker, Thomas & Rosa-Dias, Pedro, 2025. "Loss aversion and the welfare ranking of policy interventions," Journal of Econometrics, Elsevier, vol. 252(PB).
    7. Millimet, Daniel L. & Roy, Jayjit, 2015. "Multilateral environmental agreements and the WTO," Economics Letters, Elsevier, vol. 134(C), pages 20-23.
    8. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    9. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    10. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    11. Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
    12. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    13. Christian Bontemps & Raquel Menezes Bezerra Sampaio, 2020. "Entry games for the airline industry," Post-Print hal-02137358, HAL.
    14. Takuya Ishihara, 2023. "Bandwidth selection for treatment choice with binary outcomes," The Japanese Economic Review, Springer, vol. 74(4), pages 539-549, October.
    15. Donald S. Poskitt & Xueyan Zhao, 2023. "Bootstrap Hausdorff Confidence Regions for Average Treatment Effect Identified Sets," Monash Econometrics and Business Statistics Working Papers 9/23, Monash University, Department of Econometrics and Business Statistics.
    16. Timothy B. Armstrong & Shu Shen, 2013. "Inference on Optimal Treatment Assignments," Cowles Foundation Discussion Papers 1927RR, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    17. Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2021. "Exploring Encouragement, Treatment, and Spillover Effects Using Principal Stratification, With Application to a Field Experiment on Teens’ Museum Attendance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 244-258, January.
    18. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    19. Ali Fakih & Paul Makdissi & Walid Marrouch & Rami V. Tabri & Myra Yazbeck, 2020. "Confidence in public institutions and the run up to the October 2019 uprising in Lebanon," Discussion Papers Series 629, School of Economics, University of Queensland, Australia.
    20. Laurens Cherchye & Bram De Rock & Arthur Lewbel & Frederic Vermeulen, 2015. "Sharing Rule Identification for General Collective Consumption Models," Econometrica, Econometric Society, vol. 83(5), pages 2001-2041, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hka:wpaper:20205-009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jennifer Pachon (email available below). General contact details of provider: https://edirc.repec.org/data/mfichus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.