IDEAS home Printed from https://ideas.repec.org/a/spr/jecrev/v74y2023i4d10.1007_s42973-023-00142-5.html
   My bibliography  Save this article

Bandwidth selection for treatment choice with binary outcomes

Author

Listed:
  • Takuya Ishihara

    (Tohoku University)

Abstract

This study considers the treatment choice problem when the outcome variable is binary. We focus on statistical treatment rules that plug in fitted values from a nonparametric kernel regression, and show that the maximum regret can be calculated by maximizing over two parameters. Using this result, we propose a novel bandwidth selection method based on the minimax regret criterion. Finally, we perform a numerical exercise to compare the optimal bandwidth choices for binary and normally distributed outcomes.

Suggested Citation

  • Takuya Ishihara, 2023. "Bandwidth selection for treatment choice with binary outcomes," The Japanese Economic Review, Springer, vol. 74(4), pages 539-549, October.
  • Handle: RePEc:spr:jecrev:v:74:y:2023:i:4:d:10.1007_s42973-023-00142-5
    DOI: 10.1007/s42973-023-00142-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42973-023-00142-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42973-023-00142-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    2. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    3. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    4. Charles F Manski, 2007. "Adaptive Minimax-Regret Treatment Choice, with Application to Drug Approval," Levine's Working Paper Archive 122247000000001404, David K. Levine.
    5. Manski, Charles F., 2007. "Minimax-regret treatment choice with missing outcome data," Journal of Econometrics, Elsevier, vol. 139(1), pages 105-115, July.
    6. Stoye, Jörg, 2012. "Minimax regret treatment choice with covariates or with limited validity of experiments," Journal of Econometrics, Elsevier, vol. 166(1), pages 138-156.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles F. Manski & Aleksey Tetenov, 2015. "Clinical trial design enabling ε-optimal treatment rules," CeMMAP working papers 60/15, Institute for Fiscal Studies.
    2. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    3. Neil Christy & Amanda Ellen Kowalski, 2024. "Counting Defiers in Health Care: A Design-Based Model of an Experiment Can Reveal Evidence Against Monotonicity," Papers 2412.16352, arXiv.org, revised Mar 2025.
    4. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    5. Charles F. Manski & Aleksey Tetenov, 2015. "Clinical trial design enabling epsilon-optimal treatment rules," Carlo Alberto Notebooks 430, Collegio Carlo Alberto.
    6. Matthew A. Masten, 2023. "Minimax-regret treatment rules with many treatments," The Japanese Economic Review, Springer, vol. 74(4), pages 501-537, October.
    7. Daido Kido, 2023. "Locally Asymptotically Minimax Statistical Treatment Rules Under Partial Identification," Papers 2311.08958, arXiv.org.
    8. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2023. "Treatment choice, mean square regret and partial identification," The Japanese Economic Review, Springer, vol. 74(4), pages 573-602, October.
    9. Neil Christy & A. E. Kowalski, 2024. "Starting Small: Prioritizing Safety over Efficacy in Randomized Experiments Using the Exact Finite Sample Likelihood," Papers 2407.18206, arXiv.org.
    10. Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for Continuous Treatments," Papers 2402.02535, arXiv.org, revised Nov 2024.
    11. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
    12. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    13. Charles F. Manski & Aleksey Tetenov, 2014. "The Quantile Performance of Statistical Treatment Rules Using Hypothesis Tests to Allocate a Population to Two Treatments," CeMMAP working papers 44/14, Institute for Fiscal Studies.
    14. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    15. Keisuke Hirano & Jack R. Porter, 2016. "Panel Asymptotics and Statistical Decision Theory," The Japanese Economic Review, Japanese Economic Association, vol. 67(1), pages 33-49, March.
    16. Thomas M. Russell, 2020. "Policy Transforms and Learning Optimal Policies," Papers 2012.11046, arXiv.org.
    17. Stoye, Jörg, 2012. "Minimax regret treatment choice with covariates or with limited validity of experiments," Journal of Econometrics, Elsevier, vol. 166(1), pages 138-156.
    18. Achim Ahrens & Alessandra Stampi‐Bombelli & Selina Kurer & Dominik Hangartner, 2024. "Optimal multi‐action treatment allocation: A two‐phase field experiment to boost immigrant naturalization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1379-1395, November.
    19. Haitian Xie, 2020. "Finite-Sample Average Bid Auction," Papers 2008.10217, arXiv.org, revised Feb 2022.
    20. Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2022. "Optimal Decision Rules when Payoffs are Partially Identified," Papers 2204.11748, arXiv.org, revised May 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecrev:v:74:y:2023:i:4:d:10.1007_s42973-023-00142-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.