IDEAS home Printed from https://ideas.repec.org/p/cca/wpaper/430.html
   My bibliography  Save this paper

Clinical trial design enabling epsilon-optimal treatment rules

Author

Listed:
  • Charles F. Manski
  • Aleksey Tetenov

Abstract

Medical research has evolved conventions for choosing sample size in randomized clinical trials that rest on the theory of hypothesis testing. Bayesians have argued that trials should be designed to maximize subjective expected utility in settings of clinical interest. This perspective is compelling given a credible prior distribution on treatment response, but Bayesians have struggled to provide guidance on specification of priors. We use the frequentist statistical decision theory of Wald (1950) to study design of trials under ambiguity. We show that epsilon-optimal rules exist when trials have large enough sample size. An epsilon-optimal rule has expected welfare within epsilon of the welfare of the best treatment in every state of nature. Equivalently, it has maximum regret no larger than epsilon. We consider trials that draw predetermined numbers of subjects at random within groups stratified by covariates and treatments. The principal analytical findings are simple sufficient conditions on sample sizes that ensure existence of epsilon-optimal treatment rules when outcomes are bounded. These conditions are obtained by application of Hoeffding (1963) large deviations inequalities to evaluate the performance of empirical success rules.

Suggested Citation

  • Charles F. Manski & Aleksey Tetenov, 2015. "Clinical trial design enabling epsilon-optimal treatment rules," Carlo Alberto Notebooks 430, Collegio Carlo Alberto.
  • Handle: RePEc:cca:wpaper:430
    as

    Download full text from publisher

    File URL: https://www.carloalberto.org/wp-content/uploads/2018/11/no.430.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    2. Yi Cheng, 2003. "Choosing sample size for a clinical trial using decision analysis," Biometrika, Biometrika Trust, vol. 90(4), pages 923-936, December.
    3. Karl Schlag, 2006. "ELEVEN - Tests needed for a Recommendation," Economics Working Papers ECO2006/2, European University Institute.
    4. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    5. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    6. Manski, Charles F., 2007. "Minimax-regret treatment choice with missing outcome data," Journal of Econometrics, Elsevier, vol. 139(1), pages 105-115, July.
    7. Stoye, Jörg, 2012. "Minimax regret treatment choice with covariates or with limited validity of experiments," Journal of Econometrics, Elsevier, vol. 166(1), pages 138-156.
    8. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 75(4), pages 643-669.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles F. Manski & Aleksey Tetenov, 2015. "Clinical trial design enabling ε-optimal treatment rules," CeMMAP working papers 60/15, Institute for Fiscal Studies.
    2. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
    3. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    4. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    5. Daido Kido, 2023. "Locally Asymptotically Minimax Statistical Treatment Rules Under Partial Identification," Papers 2311.08958, arXiv.org.
    6. Neil Christy & A. E. Kowalski, 2024. "Starting Small: Prioritizing Safety over Efficacy in Randomized Experiments Using the Exact Finite Sample Likelihood," Papers 2407.18206, arXiv.org.
    7. Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for Continuous Treatments," Papers 2402.02535, arXiv.org, revised Nov 2024.
    8. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    9. Charles F. Manski, 2018. "Reasonable patient care under uncertainty," Health Economics, John Wiley & Sons, Ltd., vol. 27(10), pages 1397-1421, October.
    10. Charles F. Manski & Aleksey Tetenov, 2014. "The Quantile Performance of Statistical Treatment Rules Using Hypothesis Tests to Allocate a Population to Two Treatments," CeMMAP working papers CWP44/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    12. Keisuke Hirano & Jack R. Porter, 2016. "Panel Asymptotics and Statistical Decision Theory," The Japanese Economic Review, Japanese Economic Association, vol. 67(1), pages 33-49, March.
    13. Thomas M. Russell, 2020. "Policy Transforms and Learning Optimal Policies," Papers 2012.11046, arXiv.org.
    14. Stoye, Jörg, 2012. "Minimax regret treatment choice with covariates or with limited validity of experiments," Journal of Econometrics, Elsevier, vol. 166(1), pages 138-156.
    15. Haitian Xie, 2020. "Finite-Sample Average Bid Auction," Papers 2008.10217, arXiv.org, revised Feb 2022.
    16. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    17. Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2022. "Functional Sequential Treatment Allocation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1311-1323, September.
    18. Charles F. Manski & Aleksey Tetenov, 2023. "Statistical decision theory respecting stochastic dominance," The Japanese Economic Review, Springer, vol. 74(4), pages 447-469, October.
    19. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    20. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.

    More about this item

    JEL classification:

    • C90 - Mathematical and Quantitative Methods - - Design of Experiments - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanni Bert (email available below). General contact details of provider: https://edirc.repec.org/data/fccaait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.