IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/60-15.html
   My bibliography  Save this paper

Clinical trial design enabling e-optimal treatment rules

Author

Listed:
  • Charles F. Manski

    () (Institute for Fiscal Studies and Northwestern University)

  • Aleksey Tetenov

    () (Institute for Fiscal Studies and University of Bristol)

Abstract

Medical research has evolved conventions for choosing sample size in randomized clinical trials that rest on the theory of hypothesis testing. Bayesians have argued that trials should be designed to maximize subjective expected utility in settings of clinical interest. This perspective is compelling given a credible prior distribution on treatment response, but Bayesians have struggled to provide guidance on specification of priors. We use the frequentist statistical decision theory of Wald (1950) to study design of trials under ambiguity. We show that e-optimal rules exist when trials have large enough sample size. An e-optimal rule has expected welfare within e of the welfare of the best treatment in every state of nature. Equivalently, it has maximum regret no larger than e. We consider trials that draw predetermined numbers of subjects at random within groups stratified by covariates and treatments. The principal analytical findings are simple sufficient conditions on sample sizes that ensure existence of e-optimal treatment rules when outcomes are bounded. These conditions are obtained by application of Hoeffding (1963) large deviations inequalities to evaluate the performance of empirical success rules.

Suggested Citation

  • Charles F. Manski & Aleksey Tetenov, 2015. "Clinical trial design enabling e-optimal treatment rules," CeMMAP working papers CWP60/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:60/15
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/cemmap/wps/cwp601515.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    2. Manski, Charles F., 2007. "Minimax-regret treatment choice with missing outcome data," Journal of Econometrics, Elsevier, vol. 139(1), pages 105-115, July.
    3. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, Oxford University Press, vol. 75(4), pages 643-669.
    4. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    5. Yi Cheng, 2003. "Choosing sample size for a clinical trial using decision analysis," Biometrika, Biometrika Trust, vol. 90(4), pages 923-936, December.
    6. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    7. Stoye, Jörg, 2012. "Minimax regret treatment choice with covariates or with limited validity of experiments," Journal of Econometrics, Elsevier, vol. 166(1), pages 138-156.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:60/15. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: http://edirc.repec.org/data/cmifsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.