IDEAS home Printed from
   My bibliography  Save this paper

Adaptive Minimax-Regret Treatment Choice, With Application To Drug Approval


  • Charles F. Manski


Suppose that there are two treatments for a condition. One is the status quo, whose properties are known from experience and the other is an innovation, whose properties are not known initially. A new cohort of persons presents itself each period and a planner must choose how to treat this cohort. When facing situations of this kind, it has become common to commission randomized trials of limited duration to learn about the innovation. Rather than wait for the outcomes of interest to unfold over time, surrogate outcomes that can be observed early on are used to judge the success of the innovation. A close approximation to this process is institutionalized in the drug approval protocol of the U. S. Food and Drug Administration. This paper brings welfare-economic and decision-theoretic thinking to bear on the problem of treatment choice, with application to drug approval. I introduce the adaptive minimax-regret (AMR) rule, which applies to each cohort the minimax-regret criterion using the knowledge of treatment response available at the time of treatment. The result is a fractional treatment allocation whenever the available knowledge does not suffice to determine which treatment is better. The rule is adaptive because, as knowledge of treatment response accumulates, successive cohorts are allocated differently across the two treatments. I use the AMR idea to suggest an adaptive drug approval process that permits partial marketing of new drugs while scientifically appropriate long-term clinical trials are underway. The stronger the evidence on health outcomes of interest, the more treatment would be permitted, with a definitive approval decision eventually made when sufficient evidence has accumulated.

Suggested Citation

  • Charles F. Manski, 2007. "Adaptive Minimax-Regret Treatment Choice, With Application To Drug Approval," NBER Working Papers 13312, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:13312
    Note: HC HE PE

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Manski, Charles F., 2007. "Minimax-regret treatment choice with missing outcome data," Journal of Econometrics, Elsevier, vol. 139(1), pages 105-115, July.
    2. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Stefanie Behncke & Markus Frölich & Michael Lechner, 2009. "Targeting Labour Market Programmes - Results from a Randomized Experiment," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 145(III), pages 221-268, September.

    More about this item

    JEL classification:

    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:13312. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.