IDEAS home Printed from https://ideas.repec.org/a/wly/quante/v9y2018i2p617-642.html

The identification power of smoothness assumptions in models with counterfactual outcomes

Author

Listed:
  • Wooyoung Kim
  • Koohyun Kwon
  • Soonwoo Kwon
  • Sokbae Lee

Abstract

In this paper, we investigate what can be learned about average counterfactual outcomes as well as average treatment effects when it is assumed that treatment response functions are smooth. We obtain a set of new partial identification results for both the average treatment response and the average treatment effect. In particular, we find that the monotone treatment response and monotone treatment selection bound of Manski and Pepper, 2000 can be further tightened if we impose the smoothness conditions on the treatment response. Since it is unknown in practice whether the imposed smoothness restriction is met, it is desirable to conduct a sensitivity analysis with respect to the smoothness assumption. We demonstrate how one can carry out a sensitivity analysis for the average treatment effect by varying the degrees of smoothness assumption. We illustrate our findings by reanalyzing the return to schooling example of Manski and Pepper, 2000 and also by measuring the effect of the length of job training on the labor market outcomes.

Suggested Citation

  • Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae Lee, 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 617-642, July.
  • Handle: RePEc:wly:quante:v:9:y:2018:i:2:p:617-642
    DOI: 10.3982/QE545
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/QE545
    Download Restriction: no

    File URL: https://libkey.io/10.3982/QE545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kevin P. Josey & Priyanka deSouza & Xiao Wu & Danielle Braun & Rachel Nethery, 2023. "Estimating a Causal Exposure Response Function with a Continuous Error-Prone Exposure: A Study of Fine Particulate Matter and All-Cause Mortality," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 20-41, March.
    2. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    3. Lixiong Li & Désiré Kédagni & Ismaël Mourifié, 2024. "Discordant relaxations of misspecified models," Quantitative Economics, Econometric Society, vol. 15(2), pages 331-379, May.
    4. Sung Jae Jun & Sokbae (Simon) Lee, 2020. "Causal inference in case-control studies," CeMMAP working papers CWP19/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Shosei Sakaguchi, 2025. "The Identification Power of Combining Experimental and Observational Data for Distributional Treatment Effect Parameters," Papers 2508.12206, arXiv.org, revised Jan 2026.
    6. Bertanha, Marinho & McCallum, Andrew H. & Seegert, Nathan, 2023. "Better bunching, nicer notching," Journal of Econometrics, Elsevier, vol. 237(2).
    7. Yiwei Sun, 2023. "Extrapolating Away from the Cutoff in Regression Discontinuity Designs," Papers 2311.18136, arXiv.org.
    8. Santiago Acerenza, 2024. "Partial Identification of Marginal Treatment Effects with Discrete Instruments and Misreported Treatment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 74-100, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:quante:v:9:y:2018:i:2:p:617-642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.