IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.12206.html
   My bibliography  Save this paper

The Identification Power of Combining Experimental and Observational Data for Distributional Treatment Effect Parameters

Author

Listed:
  • Shosei Sakaguchi

Abstract

This study investigates the identification power gained by combining experimental data, in which treatment is randomized, with observational data, in which treatment is self-selected, for distributional treatment effect (DTE) parameters. While experimental data identify average treatment effects, many DTE parameters, such as the distribution of individual treatment effects, are only partially identified. We examine whether and how combining these two data sources tightens the identified set for such parameters. For broad classes of DTE parameters, we derive nonparametric sharp bounds under the combined data and clarify the mechanism through which data combination improves identification relative to using experimental data alone. Our analysis highlights that self-selection in observational data is a key source of identification power. We establish necessary and sufficient conditions under which the combined data shrink the identified set, showing that such shrinkage generally occurs unless selection-on-observables holds in the observational data. We also propose a linear programming approach to compute sharp bounds that can incorporate additional structural restrictions, such as positive dependence between potential outcomes and the generalized Roy model. An empirical application using data on negative campaign advertisements in the 2008 U.S. presidential election illustrates the practical relevance of the proposed approach.

Suggested Citation

  • Shosei Sakaguchi, 2025. "The Identification Power of Combining Experimental and Observational Data for Distributional Treatment Effect Parameters," Papers 2508.12206, arXiv.org, revised Oct 2025.
  • Handle: RePEc:arx:papers:2508.12206
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.12206
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanqin Fan & Jisong Wu, 2010. "Partial Identification of the Distribution of Treatment Effects in Switching Regime Models and its Confidence Sets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(3), pages 1002-1041.
    2. Callaway, Brantly, 2021. "Bounds on distributional treatment effect parameters using panel data with an application on job displacement," Journal of Econometrics, Elsevier, vol. 222(2), pages 861-881.
    3. repec:cup:apsrev:v:113:y:2019:i:04:p:902-916_00 is not listed on IDEAS
    4. Zheng Fang & Andres Santos & Azeem M. Shaikh & Alexander Torgovitsky, 2023. "Inference for Large‐Scale Linear Systems With Known Coefficients," Econometrica, Econometric Society, vol. 91(1), pages 299-327, January.
    5. Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae Lee, 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 617-642, July.
    6. JoonHwan Cho & Thomas M. Russell, 2024. "Simple Inference on Functionals of Set-Identified Parameters Defined by Linear Moments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 563-578, April.
    7. Yanqin Fan & Robert Sherman & Matthew Shum, 2014. "Identifying Treatment Effects Under Data Combination," Econometrica, Econometric Society, vol. 82(2), pages 811-822, March.
    8. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    9. Dean Knox & Teppei Yamamoto & Matthew A. Baum & Adam J. Berinsky, 2019. "Design, Identification, and Sensitivity Analysis for Patient Preference Trials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1532-1546, October.
    10. Long, Qi & Little, Roderick J. & Lin, Xihong, 2008. "Causal Inference in Hybrid Intervention Trials Involving Treatment Choice," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 474-484, June.
    11. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
    12. Brian J. Gaines & James H. Kuklinski, 2011. "Experimental Estimation of Heterogeneous Treatment Effects Related to Self‐Selection," American Journal of Political Science, John Wiley & Sons, vol. 55(3), pages 724-736, July.
    13. Yifan Cui & Sukjin Han, 2023. "Policy Learning with Distributional Welfare," Papers 2311.15878, arXiv.org, revised Apr 2025.
    14. Evan T.R. Rosenman & Guillaume Basse & Art B. Owen & Mike Baiocchi, 2023. "Combining observational and experimental datasets using shrinkage estimators," Biometrics, The International Biometric Society, vol. 79(4), pages 2961-2973, December.
    15. De Benedictis-Kessner, Justin & Baum, Matthew A. & Berinsky, Adam J. & Yamamoto, Teppei, 2019. "Persuading the Enemy: Estimating the Persuasive Effects of Partisan Media with the Preference-Incorporating Choice and Assignment Design," American Political Science Review, Cambridge University Press, vol. 113(4), pages 902-916, November.
    16. Thomas M. Russell, 2021. "Sharp Bounds on Functionals of the Joint Distribution in the Analysis of Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 532-546, March.
    17. Firpo, Sergio & Ridder, Geert, 2019. "Partial identification of the treatment effect distribution and its functionals," Journal of Econometrics, Elsevier, vol. 213(1), pages 210-234.
    18. George Z. Gui, 2024. "Combining Observational and Experimental Data to Improve Efficiency Using Imperfect Instruments," Marketing Science, INFORMS, vol. 43(2), pages 378-391, March.
    19. Quang Vuong & Haiqing Xu, 2017. "Counterfactual mapping and individual treatment effects in nonseparable models with binary endogeneity," Quantitative Economics, Econometric Society, vol. 8(2), pages 589-610, July.
    20. Fan, Yanqin & Guerre, Emmanuel & Zhu, Dongming, 2017. "Partial identification of functionals of the joint distribution of “potential outcomes”," Journal of Econometrics, Elsevier, vol. 197(1), pages 42-59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sungwon Lee, 2024. "Partial identification and inference for conditional distributions of treatment effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 107-127, January.
    2. Firpo, Sergio & Galvao, Antonio F. & Parker, Thomas, 2023. "Uniform inference for value functions," Journal of Econometrics, Elsevier, vol. 235(2), pages 1680-1699.
    3. Wenlong Ji & Lihua Lei & Asher Spector, 2023. "Model-Agnostic Covariate-Assisted Inference on Partially Identified Causal Effects," Papers 2310.08115, arXiv.org, revised Nov 2024.
    4. Kitagawa, Toru, 2021. "The identification region of the potential outcome distributions under instrument independence," Journal of Econometrics, Elsevier, vol. 225(2), pages 231-253.
    5. Erich Battistin & Carlos Lamarche & Enrico Rettore, 2024. "Quantiles of the gain distribution of an early childhood intervention," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(6), pages 1045-1064, September.
    6. Vira Semenova, 2023. "Debiased Machine Learning of Aggregated Intersection Bounds and Other Causal Parameters," Papers 2303.00982, arXiv.org, revised May 2025.
    7. Callaway, Brantly, 2021. "Bounds on distributional treatment effect parameters using panel data with an application on job displacement," Journal of Econometrics, Elsevier, vol. 222(2), pages 861-881.
    8. Daniel Ober-Reynolds, 2023. "Estimating Functionals of the Joint Distribution of Potential Outcomes with Optimal Transport," Papers 2311.09435, arXiv.org.
    9. Molinari, Francesca, 2020. "Microeconometrics with partial identification," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 355-486, Elsevier.
    10. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    11. Fan, Yanqin & Guerre, Emmanuel & Zhu, Dongming, 2017. "Partial identification of functionals of the joint distribution of “potential outcomes”," Journal of Econometrics, Elsevier, vol. 197(1), pages 42-59.
    12. Afrouz Azadikhah Jahromi & Brantly Callaway, 2022. "Heterogeneous Effects of Job Displacement on Earnings," Empirical Economics, Springer, vol. 62(1), pages 213-245, January.
    13. Florian F Gunsilius, 2025. "A primer on optimal transport for causal inference with observational data," Papers 2503.07811, arXiv.org, revised Mar 2025.
    14. John Mullahy, 2017. "Individual Results May Vary: Elementary Analytics of Inequality-Probability Bounds, with Applications to Health-Outcome Treatment Effects," NBER Working Papers 23603, National Bureau of Economic Research, Inc.
    15. Sungwon Lee, 2021. "Partial Identification and Inference for Conditional Distributions of Treatment Effects," Papers 2108.00723, arXiv.org, revised Nov 2023.
    16. Mullahy, John, 2018. "Individual results may vary: Inequality-probability bounds for some health-outcome treatment effects," Journal of Health Economics, Elsevier, vol. 61(C), pages 151-162.
    17. Battistin, Erich & Lamarche, Carlos & Rettore, Enrico, 2020. "Quantiles of the Gain Distribution of an Early Child Intervention," CEPR Discussion Papers 14721, C.E.P.R. Discussion Papers.
    18. Aaron Bodoh-Creed & Brent Hickman & John List & Ian Muir & Gregory Sun, 2023. "Stress Testing Structural Models of Unobserved Heterogeneity: Robust Inference on Optimal Nonlinear Pricing," Natural Field Experiments 00776, The Field Experiments Website.
    19. Han, Sukjin & Yang, Shenshen, 2024. "A computational approach to identification of treatment effects for policy evaluation," Journal of Econometrics, Elsevier, vol. 240(1).
    20. Firpo, Sergio & Ridder, Geert, 2019. "Partial identification of the treatment effect distribution and its functionals," Journal of Econometrics, Elsevier, vol. 213(1), pages 210-234.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.12206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.