IDEAS home Printed from https://ideas.repec.org/p/ags/iaae18/277253.html
   My bibliography  Save this paper

Conditional Distributions of Crop Yields: A Bayesian Approach for Characterizing Technological Change

Author

Listed:
  • Ramsey, A.

Abstract

What changes in the distribution of crop yields occur as a result of technological innovation? Viewing observed yields as random variables, estimation of the yield distribution conditional on time provides one approach for characterizing distributional transformation. Yields are also affected by weather and other covariates, spatial correlation, and a paucity of data in any one location. Common parametric and nonparametric methods rarely consider these aspects in a unified manner. Comprehensive solutions for describing the distribution of yields can be considered ideal. We implement a Bayesian spatial quantile regression model for the conditional distribution of yields that is distribution-free, includes weather (covariate) effects, smooths across space, and models the complete quantile process. Results provide insight into the temporal and spatial evolution of crop yields with implications for the measurement of technological change. Acknowledgement :

Suggested Citation

  • Ramsey, A., 2018. "Conditional Distributions of Crop Yields: A Bayesian Approach for Characterizing Technological Change," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277253, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae18:277253
    DOI: 10.22004/ag.econ.277253
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/277253/files/1472.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.277253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wagner Piazza Gaglianone & Luiz Renato Lima, 2012. "Constructing Density Forecasts from Quantile Regressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
    2. Ryu, Hang K. & Slottje, Daniel J., 1996. "Two flexible functional form approaches for approximating the Lorenz curve," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 251-274.
    3. Jalan, Jyotsna & Ravallion, Martin, 2001. "Behavioral responses to risk in rural China," Journal of Development Economics, Elsevier, vol. 66(1), pages 23-49, October.
    4. Paul Gallagher, 1987. "U.S. Soybean Yields: Estimation and Forecasting with Nonsymmetric Disturbances," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 69(4), pages 796-803.
    5. Wolfram Schlenker & Michael J. Roberts, 2006. "Nonlinear Effects of Weather on Corn Yields," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(3), pages 391-398.
    6. Gallagher, Paul W., 1987. "U.S. Soybean Yields: Estimation and Forecasting with Non-Symmetric Disturbances," Staff General Research Papers Archive 10779, Iowa State University, Department of Economics.
    7. Barnwal, Prabhat & Kotani, Koji, 2013. "Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India," Ecological Economics, Elsevier, vol. 87(C), pages 95-109.
    8. Sanglestsawai, Santi & Rejesus, Roderick M. & Yorobe, Jose M., 2014. "Do lower yielding farmers benefit from Bt corn? Evidence from instrumental variable quantile regressions," Food Policy, Elsevier, vol. 44(C), pages 285-296.
    9. Wagner Piazza Gaglianone & Luiz Renato Lima, 2014. "Constructing Optimal Density Forecasts From Point Forecast Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
    10. Buchinsky, Moshe, 1994. "Changes in the U.S. Wage Structure 1963-1987: Application of Quantile Regression," Econometrica, Econometric Society, vol. 62(2), pages 405-458, March.
    11. john M. Antle, 2010. "Asymmetry, Partial Moments, and Production Risk," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(5), pages 1294-1309.
    12. Dries F. Benoit & Dirk Van den Poel, 2012. "Binary quantile regression: a Bayesian approach based on the asymmetric Laplace distribution," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1174-1188, November.
    13. Brian J. Reich, 2012. "Spatiotemporal quantile regression for detecting distributional changes in environmental processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(4), pages 535-553, August.
    14. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    15. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    16. Chak, Pok Man & Madras, Neal & Smith, Barry, 2005. "Semi-nonparametric estimation with Bernstein polynomials," Economics Letters, Elsevier, vol. 89(2), pages 153-156, November.
    17. Terrance M. Hurley & Xudong Rao & Philip G. Pardey, 2014. "Re-examining the Reported Rates of Return to Food and Agricultural Research and Development," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1492-1504.
    18. Tony Lancaster & Sung Jae Jun, 2010. "Bayesian quantile regression methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 287-307.
    19. Vitor A. Ozaki & Sujit K. Ghosh & Barry K. Goodwin & Ricardo Shirota, 2008. "Spatio-Temporal Modeling of Agricultural Yield Data with an Application to Pricing Crop Insurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(4), pages 951-961.
    20. Sparger, John Adam & Norton, George W. & Heisey, Paul W. & Alwang, Jeffrey, 2013. "Is the share of agricultural maintenance research rising in the United States?," Food Policy, Elsevier, vol. 38(C), pages 126-135.
    21. Jayson L. Lusk & Jesse Tack & Nathan P. Hendricks, 2018. "Heterogeneous Yield Impacts from Adoption of Genetically Engineered Corn and the Importance of Controlling for Weather," NBER Chapters, in: Agricultural Productivity and Producer Behavior, pages 11-39, National Bureau of Economic Research, Inc.
    22. Michael J. Roberts & Wolfram Schlenker & Jonathan Eyer, 2013. "Agronomic Weather Measures in Econometric Models of Crop Yield with Implications for Climate Change," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 236-243.
    23. Alan P. Ker & Tor N. Tolhurst & Yong Liu, 2016. "Bayesian Estimation of Possibly Similar Yield Densities: Implications for Rating Crop Insurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(2), pages 360-382.
    24. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
    25. Brian J. Reich & Luke B. Smith, 2013. "Bayesian Quantile Regression for Censored Data," Biometrics, The International Biometric Society, vol. 69(3), pages 651-660, September.
    26. Carl H. Nelson & Paul V. Preckel, 1989. "The Conditional Beta Distribution as a Stochastic Production Function," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(2), pages 370-378.
    27. Rejesus, Roderick M. & Coble, Keith H. & Miller, Mary France & Boyles, Ryan & Goodwin, Barry K & Knight, Thomas O., 2015. "Accounting for Weather Probabilities in Crop Insurance Rating," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 40(2), pages 1-19, May.
    28. Luke B. Smith & Brian J. Reich & Amy H. Herring & Peter H. Langlois & Montserrat Fuentes, 2015. "Multilevel quantile function modeling with application to birth outcomes," Biometrics, The International Biometric Society, vol. 71(2), pages 508-519, June.
    29. Zhu, Ying & Goodwin, Barry K. & Ghosh, Sujit K., 2011. "Modeling Yield Risk Under Technological Change: Dynamic Yield Distributions and the U.S. Crop Insurance Program," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 36(1), pages 1-19, April.
    30. Barry K. Goodwin & Alan P. Ker, 1998. "Nonparametric Estimation of Crop Yield Distributions: Implications for Rating Group-Risk Crop Insurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 139-153.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A Ford Ramsey, 2020. "Probability Distributions of Crop Yields: A Bayesian Spatial Quantile Regression Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 220-239, January.
    2. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    3. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    4. Jesse Tack & David Ubilava, 2013. "The effect of El Niño Southern Oscillation on U.S. corn production and downside risk," Climatic Change, Springer, vol. 121(4), pages 689-700, December.
    5. Liang, Weifang & Liu, Yong, 2023. "Rating Crop Insurance Contracts with Model Stacking of Gaussian Processes," 2023 Annual Meeting, July 23-25, Washington D.C. 335759, Agricultural and Applied Economics Association.
    6. Yong Liu & Alan P. Ker, 2021. "Simultaneous borrowing of information across space and time for pricing insurance contracts: An application to rating crop insurance policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 231-257, March.
    7. Yu, Tian, 2011. "Three essays on weather and crop yield," ISU General Staff Papers 201101010800002976, Iowa State University, Department of Economics.
    8. Yong Liu & A. Ford Ramsey, 2023. "Incorporating historical weather information in crop insurance rating," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(2), pages 546-575, March.
    9. Christopher N. Boyer & B. Wade Brorsen & Emmanuel Tumusiime, 2015. "Modeling skewness with the linear stochastic plateau model to determine optimal nitrogen rates," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 1-10, January.
    10. Agarwal, Sandip Kumar, 2017. "Subjective beliefs and decision making under uncertainty in the field," ISU General Staff Papers 201701010800006248, Iowa State University, Department of Economics.
    11. Ozaki, Vitor & Campos, Rogério, 2017. "Reduzindo a Incerteza no Mercado de Seguros: Uma Abordagem via Informações de Sensoriamento Remoto e Atuária," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 71(4), December.
    12. Yunwen Yang & Huixia Judy Wang & Xuming He, 2016. "Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood," International Statistical Review, International Statistical Institute, vol. 84(3), pages 327-344, December.
    13. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    14. Liu, Y. & Ker, A., 2018. "Is There Too Much History in Historical Yield Data," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277293, International Association of Agricultural Economists.
    15. Hennessy, David A., 2009. "Crop Yield Skewness and the Normal Distribution," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 34(1), pages 1-19, April.
    16. Yaling Li & Fujin Yi & Yanjun Wang & Richard Gudaj, 2019. "The Value of El Niño-Southern Oscillation Forecasts to China’s Agriculture," Sustainability, MDPI, vol. 11(15), pages 1-23, August.
    17. Ghahremanzadeh, Mohammad & Mohammadrezaei, Rassul & Dashti, Ghader & Ainollahi, Moharram, 2018. "Designing a whole-farm revenue insurance for agricultural crops in Zanjan province of Iran," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 17(02), January.
    18. Li, Lisha, 2015. "Three essays on crop yield, crop insurance and climate change," ISU General Staff Papers 201501010800005371, Iowa State University, Department of Economics.
    19. Shen, Zhiwei, 2016. "Adaptive local parametric estimation of crop yields: implication for crop insurance ratemaking," 156th Seminar, October 4, 2016, Wageningen, The Netherlands 249984, European Association of Agricultural Economists.
    20. Li, Shuang & Ker, Alan P., 2013. "An Assessment of the Canadian Federal-Provincial Crop Production Insurance Program under Future Climate Change Scenarios in Ontario," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 151213, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    Crop Production/Industries;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae18:277253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.