IDEAS home Printed from https://ideas.repec.org/p/cdl/agrebk/qt0801j7s0.html
   My bibliography  Save this paper

The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions

Author

Listed:
  • Schlenker, Wolfram
  • Hanemann, W. Michael
  • Fisher, Anthony C.

Abstract

We link farmland values to climatic, soil, and socioeconomic variables for counties east of the 100th meridian, the historic boundary of agriculture not primarily dependent on irrigation. Degree days, a non-linear transformation of the climatic variables suggested by agronomic experiments as more relevant to crop yield gives an improved fit and increased robustness. Estimated coefficients are consistent with the experimental results. The model is employed to estimate the potential impacts on farmland values for a range of recent warming scenarios. The predictions are very robust and more than 75% of the counties in our sample show a statistically significant effect, ranging from moderate gains to large losses, with losses in the aggregate that can become quite large under scenarios involving sustained heavy use of fossil fuels.

Suggested Citation

  • Schlenker, Wolfram & Hanemann, W. Michael & Fisher, Anthony C., 2004. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt0801j7s0, Department of Agricultural & Resource Economics, UC Berkeley.
  • Handle: RePEc:cdl:agrebk:qt0801j7s0
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/0801j7s0.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Davidson, Russell & MacKinnon, James G, 1981. "Several Tests for Model Specification in the Presence of Alternative Hypotheses," Econometrica, Econometric Society, vol. 49(3), pages 781-793, May.
    3. Nordhaus, William D, 1991. "To Slow or Not to Slow: The Economics of the Greenhouse Effect," Economic Journal, Royal Economic Society, vol. 101(407), pages 920-937, July.
    4. Richard M. Adams, 1989. "Global Climate Change and Agriculture: An Economic Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(5), pages 1272-1279.
    5. Kathleen P. Bell & Nancy E. Bockstael, 2000. "Applying the Generalized-Moments Estimation Approach to Spatial Problems Involving Microlevel Data," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 72-82, February.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. William R. Cline, 1992. "Economics of Global Warming, The," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 39, July.
    8. Roy Darwin, 1999. "The Impact of Global Warming on Agriculture: A Ricardian Analysis: Comment," American Economic Review, American Economic Association, vol. 89(4), pages 1049-1052, September.
    9. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    10. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schlenker, Wolfram & Hanemann, W. Michael & Fisher, Anthony C., 2004. "Determinants of Agricultural Output: Degree Days, Yields and Implications for Climate Change," 2005 Annual meeting, July 24-27, Providence, RI 19222, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    3. Chang Cai & Sandy Dall’Erba, 2021. "On the evaluation of heterogeneous climate change impacts on US agriculture: does group membership matter?," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    4. Garcia, Maria & Viladrich-Grau, Montserrat, 2009. "The economic relevance of climate variables in agriculture: The case of Spain," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 9(02), pages 1-32.
    5. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    6. Schlenker, Wolfram & Hanemann, W. & Fisher, Anthony C., 2002. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis," CUDARE Working Papers 198692, University of California, Berkeley, Department of Agricultural and Resource Economics.
    7. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    8. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics Working Papers 2015-20, University of Adelaide, School of Economics.
    9. Sohngen, Brent & Sedjo, Roger A. & Mendelsohn, Robert & Lyon, Kenneth S., 1996. "Analyzing the Economic Impact of Climate Change on Global Timber Markets," Discussion Papers 10462, Resources for the Future.
    10. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    11. Chonabayashi, Shun, 2014. "Accounting for Land Use Adaptation to Climate Change Impacts on US Agriculture," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170710, Agricultural and Applied Economics Association.
    12. Samuel Fankhauser & Nicholas Stern, 2016. "Climate change, development, poverty and economics," GRI Working Papers 253, Grantham Research Institute on Climate Change and the Environment.
    13. Sabrina Auci & Donatella Vignani, 2020. "Climate variability and agriculture in Italy: a stochastic frontier analysis at the regional level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(2), pages 381-409, July.
    14. Sampson, Gabriel S. & Hendricks, Nathan P. & Taylor, Mykel R., 2019. "Land market valuation of groundwater," Resource and Energy Economics, Elsevier, vol. 58(C).
    15. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    16. Balvers, Ronald & Du, Ding & Zhao, Xiaobing, 2012. "The Adverse Impact of Gradual Temperature Change on Capital Investment," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124676, Agricultural and Applied Economics Association.
    17. Roger Fouquet, 2012. "Economics of Energy and Climate Change: Origins, Developments and Growth," Working Papers 2012-08, BC3.
    18. Robert G. Chambers & Simone Pieralli, 2020. "The Sources of Measured US Agricultural Productivity Growth: Weather, Technological Change, and Adaptation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1198-1226, August.
    19. Sampson, Gabriel & Hendricks, Nathan P. & Taylor, Mykel R., 2018. "Land Market Valuation of Groundwater Availability," 2018 Annual Meeting, August 5-7, Washington, D.C. 274320, Agricultural and Applied Economics Association.
    20. Ron Balvers & Ding Du & Xiaobing Zhao, 2009. "What Do Financial Markets Reveal about Global Warming?," Working Papers 09-04, Department of Economics, West Virginia University.

    More about this item

    Keywords

    agriculture; climate changes; econometric models; global warming; Life Sciences;
    All these keywords.

    JEL classification:

    • Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:agrebk:qt0801j7s0. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.