IDEAS home Printed from https://ideas.repec.org/p/ags/aaea14/170710.html
   My bibliography  Save this paper

Accounting for Land Use Adaptation to Climate Change Impacts on US Agriculture

Author

Listed:
  • Chonabayashi, Shun

Abstract

No abstract is available for this item.

Suggested Citation

  • Chonabayashi, Shun, 2014. "Accounting for Land Use Adaptation to Climate Change Impacts on US Agriculture," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170710, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea14:170710
    DOI: 10.22004/ag.econ.170710
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/170710/files/Accounting%20072814.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.170710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Douglas J. Miller & Andrew J. Plantinga, 1999. "Modeling Land Use Decisions with Aggregate Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 180-194.
    2. Cline, William R, 1996. "The Impact of Global Warming on Agriculture: Comment," American Economic Review, American Economic Association, vol. 86(5), pages 1309-1311, December.
    3. Richard M. Adams, 1989. "Global Climate Change and Agriculture: An Economic Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(5), pages 1272-1279.
    4. John K. Horowitz & John Quiggin, 1999. "The Impact of Global Warming on Agriculture: A Ricardian Analysis: Comment," American Economic Review, American Economic Association, vol. 89(4), pages 1044-1045, September.
    5. Jianhong Mu & Bruce McCarl & Anne Wein, 2013. "Adaptation to climate change: changes in farmland use and stocking rate in the U.S," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(6), pages 713-730, August.
    6. Emanuele Massetti & Robert Mendelsohn & Shun Chonabayashi, 2014. "Using Degree Days to Value Farmland," CESifo Working Paper Series 5148, CESifo.
    7. Roy Darwin, 1999. "The Impact of Global Warming on Agriculture: A Ricardian Analysis: Comment," American Economic Review, American Economic Association, vol. 89(4), pages 1049-1052, September.
    8. Ethan E. Butler & Peter Huybers, 2013. "Adaptation of US maize to temperature variations," Nature Climate Change, Nature, vol. 3(1), pages 68-72, January.
    9. Robert Mendelsohn & Ariel Dinar, 2009. "Climate Change and Agriculture," Books, Edward Elgar Publishing, number 12990.
    10. Rose, Steven K. & McCarl, Bruce A., 2008. "Greenhouse Gas Emissions, Stabilization and the Inevitability of Adaptation: Challenges for U.S. Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-4.
    11. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    12. Michelle J. Reinsborough, 2003. "A Ricardian model of climate change in Canada," Canadian Journal of Economics, Canadian Economics Association, vol. 36(1), pages 21-40, February.
    13. Andrew J. Plantinga, 1996. "The Effect of Agricultural Policies on Land Use and Environmental Quality," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1082-1091.
    14. Adams, Richard M. & McCarl, Bruce A. & Dudek, Daniel J. & Glyer, J. David, 1988. "Implications Of Global Climate Change For Western Agriculture," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 13(2), pages 1-9, December.
    15. JunJie Wu & Kathleen Segerson, 1995. "The Impact of Policies and Land Characteristics on Potential Groundwater Pollution in Wisconsin," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(4), pages 1033-1047.
    16. Erik Lichtenberg, 1989. "Land Quality, Irrigation Development, and Cropping Patterns in the Northern High Plains," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(1), pages 187-194.
    17. Michelle J. Reinsborough, 2003. "A Ricardian model of climate change in Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(1), pages 21-40, March.
    18. Chakir, Raja & Le Gallo, Julie, 2013. "Predicting land use allocation in France: A spatial panel data analysis," Ecological Economics, Elsevier, vol. 92(C), pages 114-125.
    19. Stavins, Robert N & Jaffe, Adam B, 1990. "Unintended Impacts of Public Investments on Private Decisions: The Depletion of Forested Wetlands," American Economic Review, American Economic Association, vol. 80(3), pages 337-352, June.
    20. Miller, Douglas & Plantinga, Andrew J., 1999. "Modeling Land Use Decisions with Aggregate Data," Staff General Research Papers Archive 1487, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    2. Basak Bayramoglu & Raja CHAKIR & Anna LUNGARSKA, 2016. "Land Use and Freshwater Ecosystems in France," EcoMod2016 9420, EcoMod.
    3. Garcia, Maria & Viladrich-Grau, Montserrat, 2009. "The economic relevance of climate variables in agriculture: The case of Spain," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 9(02), pages 1-32.
    4. Jean-Sauveur Ay & Raja Chakir & Julie Le Gallo, 2014. "The effects of scale, space and time on the predictive accuracy of land use models," Working Papers 2014/02, INRA, Economie Publique.
    5. Chakir, Raja & Lungarska, Anna, 2015. "Agricultural land rents in land use models: a spatial econometric analysis," 150th Seminar, October 22-23, 2015, Edinburgh, Scotland 212641, European Association of Agricultural Economists.
    6. Gouel, Christophe & Laborde, David, 2021. "The crucial role of domestic and international market-mediated adaptation to climate change," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    7. Chakir, Raja & Le Gallo, Julie, 2013. "Predicting land use allocation in France: A spatial panel data analysis," Ecological Economics, Elsevier, vol. 92(C), pages 114-125.
    8. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    9. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    10. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    11. Ahmad, Munir & Nawaz, Muhammad & Iqbal, Muhammad & Javed, Sajid, 2014. "Analysing the Impact of Climate Change on Rice Productivity in Pakistan," MPRA Paper 72861, University Library of Munich, Germany.
    12. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    13. Kan, Iddo & Kimhi, Ayal & Kaminski, Jonathan, 2015. "Climate-Change Impacts on Agriculture and Food Markets: Combining a Micro-Level Structural Land-Use Model and a Market-Level Equilibrium Model," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205128, Agricultural and Applied Economics Association.
    14. Raja Chakir & Olivier Parent, 2009. "Determinants of land use changes: A spatial multinomial probit approach," Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 327-344, June.
    15. Birthal, P.S. & Negi, Digvijay S. & Kumar, Shiv & Aggarwal, Shaily & Suresh, A. & Khan, Md. Tajuddin, 2014. "How Sensitive is Indian Agriculture to Climate Change?," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 69(4), pages 1-14.
    16. Carlo Fezzi & Ian Bateman & Tom Askew & Paul Munday & Unai Pascual & Antara Sen & Amii Harwood, 2014. "Valuing Provisioning Ecosystem Services in Agriculture: The Impact of Climate Change on Food Production in the United Kingdom," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(2), pages 197-214, February.
    17. Jonathan Kaminski & Iddo Kan & Aliza Fleischer, 2013. "A Structural Land-Use Analysis of Agricultural Adaptation to Climate Change: A Proactive Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(1), pages 70-93.
    18. Alain Carpentier & Elodie Letort, 2014. "Multicrop Production Models with Multinomial Logit Acreage Shares," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(4), pages 537-559, December.
    19. Kan, Iddo & Reznik, Ami & Kaminski, Jonathan & Kimhi, Ayal, 2023. "The impacts of climate change on cropland allocation, crop production, output prices and social welfare in Israel: A structural econometric framework," Food Policy, Elsevier, vol. 115(C).
    20. Schlenker, Wolfram & Hanemann, W. Michael & Fisher, Anthony C., 2004. "Determinants of Agricultural Output: Degree Days, Yields and Implications for Climate Change," 2005 Annual meeting, July 24-27, Providence, RI 19222, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    More about this item

    Keywords

    Environmental Economics and Policy; Land Economics/Use;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea14:170710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.