IDEAS home Printed from https://ideas.repec.org/a/oup/ajagec/v95y2013i1p70-93.html
   My bibliography  Save this article

A Structural Land-Use Analysis of Agricultural Adaptation to Climate Change: A Proactive Approach

Author

Listed:
  • Jonathan Kaminski
  • Iddo Kan
  • Aliza Fleischer

Abstract

This article proposes a proactive approach for analyzing agricultural adaptation to climate change wherein agricultural production technologies are regarded as potential targets of research and development (R&D) efforts. We develop a structural land-use model wherein farmers maximize profit by allocating their land among crop-technology bundles. Proactive R&D directions are derived by identifying the technological attributes through which climate change reduces overall agricultural profitability, despite farmers reallocating their land into bundles. We find that in Israel, long-term losses stem from increases in crops' input requirements and changes in the inter- and intra-annual distribution of precipitations. Therefore, we identify these vulnerable points as the main potential targets of further R&D efforts. Copyright 2013, Oxford University Press.

Suggested Citation

  • Jonathan Kaminski & Iddo Kan & Aliza Fleischer, 2013. "A Structural Land-Use Analysis of Agricultural Adaptation to Climate Change: A Proactive Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(1), pages 70-93.
  • Handle: RePEc:oup:ajagec:v:95:y:2013:i:1:p:70-93
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ajae/aas075
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kurukulasuriya, Pradeep & Mendelsohn, Robert, 2008. "Crop switching as a strategy for adapting to climate change," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 2(1), pages 1-22, March.
    2. Fleischer, Aliza & Lichtman, Ivgenia & Mendelsohn, Robert, 2008. "Climate change, irrigation, and Israeli agriculture: Will warming be harmful?," Ecological Economics, Elsevier, vol. 65(3), pages 508-515, April.
    3. Aliza Fleischer & Yacov Tsur, 2009. "The Amenity Value of Agricultural Landscape and Rural–Urban Land Allocation," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 132-153, February.
    4. Pradeep Kurukulasuriya & Robert Mendelsohn & Rashid Hassan & James Benhin & Temesgen Deressa & Mbaye Diop & Helmy Mohamed Eid & K. Yerfi Fosu & Glwadys Gbetibouo & Suman Jain & Ali Mahamadou & Renneth, 2006. "Will African Agriculture Survive Climate Change?," World Bank Economic Review, World Bank Group, vol. 20(3), pages 367-388.
    5. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    6. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    7. Robert K. Kaufmann & Seth E. Snell, 1997. "A Biophysical Model of Corn Yield: Integrating Climatic and Social Determinants," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 178-190.
    8. Seo, S. Niggol & Mendelsohn, Robert, 2008. "An analysis of crop choice: Adapting to climate change in South American farms," Ecological Economics, Elsevier, vol. 67(1), pages 109-116, August.
    9. Lichtenberg, Erik & Zilberman, David & Bogen, Kenneth T., 1989. "Regulating environmental health risks under uncertainty: Groundwater contamination in California," Journal of Environmental Economics and Management, Elsevier, vol. 17(1), pages 22-34, July.
    10. Ian W. Hardie & Peter J. Parks, 1997. "Land Use with Heterogeneous Land Quality: An Application of an Area Base Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(2), pages 299-310.
    11. Douglas J. Miller & Andrew J. Plantinga, 1999. "Modeling Land Use Decisions with Aggregate Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 180-194.
    12. Cline, William R, 1996. "The Impact of Global Warming on Agriculture: Comment," American Economic Review, American Economic Association, vol. 86(5), pages 1309-1311, December.
    13. Alain Carpentier & Elodie Letort, 2009. "Modeling acreage decisions within the multinomial Logit framework," Working Papers SMART - LERECO 09-17, INRAE UMR SMART-LERECO.
    14. Rulon D. Pope & Richard E. Just, 2003. "Distinguishing Errors in Measurement from Errors in Optimization," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 348-358.
    15. Miller, Douglas & Plantinga, Andrew J., 1999. "Modeling Land Use Decisions with Aggregate Data," Staff General Research Papers Archive 1487, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Féménia, Fabienne & Letort, Elodie, 2016. "How to achieve significant reduction in pesticide use? An empirical evaluation of the impacts of pesticide taxation associated to a change in cropping practice," Working Papers 233482, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    2. Kimhi, A., 2018. "Integrated Micro-Macro Structural Econometric Framework for Assessing Climate-Change Impacts on Agricultural Production and Food Markets," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276972, International Association of Agricultural Economists.
    3. McFadden, Jonathan & Miranowski, John, "undated". "Climate Change Impacts on the Intensive and Extensive Margins of US Agricultural Land," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170512, Agricultural and Applied Economics Association.
    4. Alain Carpentier & Elodie Letort, 2014. "Multicrop Production Models with Multinomial Logit Acreage Shares," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(4), pages 537-559, December.
    5. Kan, Iddo & Reznik, Ami & Kimhi, Ayal & Kaminski, Jonathan, 2018. "The Impacts of Climate Change on Cropland Allocation, Crop Production, Output Prices and Social Welfare in Israel: A Structural Econometric Framework," Discussion Papers 290059, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    6. Femenia, Fabienne & Letort, Elodie, 2016. "How to significantly reduce pesticide use: An empirical evaluation of the impacts of pesticide taxation associated with a change in cropping practice," Ecological Economics, Elsevier, vol. 125(C), pages 27-37.
    7. Femenia, Fabienne & Letort, Elodie, 2014. "Economic incentives to the adoption of low input cropping systems: the case of multi-resistant wheat cultivars in France," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182743, European Association of Agricultural Economists.
    8. McFadden, Jonathan R., 2015. "Essays on climate change adaptation and biotechnologies in U.S. agriculture," ISU General Staff Papers 201501010800005635, Iowa State University, Department of Economics.
    9. Cornelis Gardebroek & Jeffrey J. Reimer & Lieneke Baller, 2017. "The Impact of Biofuel Policies on Crop Acreages in Germany and France," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(3), pages 839-860, September.
    10. Kan, Iddo & Kimhi, Ayal & Kaminski, Jonathan, 2015. "Climate-Change Impacts on Agriculture and Food Markets: Combining a Micro-Level Structural Land-Use Model and a Market-Level Equilibrium Model," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205128, Agricultural and Applied Economics Association.
    11. Spolador, Humberto Francisco Silva & Smith, Rodney B.W., 2014. "The Effects of Climate Changes on Brazilian Agricultural Production – A Multisector Growth Model Analysis," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170294, Agricultural and Applied Economics Association.
    12. Ferreira, Marcelo D P & Feres, Jose, 2018. "The Role of Climate Risk on Land Allocation in Brazilian Amazon," 2018 Annual Meeting, August 5-7, Washington, D.C. 274436, Agricultural and Applied Economics Association.
    13. Kan, Iddo & Kimhi, Ayal & Kaminski, Jonathan, 2014. "The impact of climate change on agriculture and food prices: combining a micro land use model and a market equilibrium model," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 183024, European Association of Agricultural Economists.
    14. Fogarasi, József & Kemény, Gábor & Molnár, András & Keményné Horváth, Zsuzsanna & Zubor-Nemes, Anna & Kiss, Andrea, 2016. "Modelling climate effects on Hungarian winter wheat and maize yields," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 118(2), pages 1-6, August.
    15. Kan, Iddo & Kimhi, Ayal & Kaminski, Jonathan, 2015. "Micro-Macro Impacts of Climate-Change on Agriculture and Food Markets," 2015 Conference, August 9-14, 2015, Milan, Italy 211828, International Association of Agricultural Economists.
    16. Czyżewski, Bazyli, 2016. "Political Rents of European Farmers in the Sustainable Development Paradigm. International, national and regional perspective," MPRA Paper 74253, University Library of Munich, Germany.
    17. Czyżewski, Bazyli & Trojanek, Radosław, 2016. "Drivers of agricultural land prices in terms of different functions of rural areas in Poland," Problems of Agricultural Economics / Zagadnienia Ekonomiki Rolnej 249742, Institute of Agricultural and Food Economics - National Research Institute (IAFE-NRI).
    18. Njuki, Eric & Bravo-Ureta, Boris E., 2016. "Measuring agricultural water productivity using a partial factor productivity approach," 2016 Fifth International Conference, September 23-26, 2016, Addis Ababa, Ethiopia 246948, African Association of Agricultural Economists (AAAE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ajagec:v:95:y:2013:i:1:p:70-93. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press). General contact details of provider: http://edirc.repec.org/data/aaeaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.