IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/23519.html
   My bibliography  Save this paper

Heterogeneous Yield Impacts from Adoption of Genetically Engineered Corn and the Importance of Controlling for Weather

Author

Listed:
  • Jayson L. Lusk
  • Jesse Tack
  • Nathan P. Hendricks

Abstract

Concern about declining growth in crop yields has renewed debates about the ability of biotechnology to promote food security. While numerous experimental and farm-level studies have found that adoption of genetically engineered crops has been associated with yield gains, aggregate and cross-country comparisons often seem to show little effect, raising questions about the size and generalizability of the effect. This paper attempts to resolve this conundrum using a panel of United States county-level corn yields from 1980 to 2015 in conjunction with data on adoption of genetically engineered crops, weather, and soil characteristics. Our panel data contain just over 28,000 observations spanning roughly 800 counties. We show that changing weather patterns confound simple analyses of trend yield, and only after controlling for weather do we find that genetically engineered crops have increased yields above trend. There is marked heterogeneity in the effect of adoption of genetically engineered crops across location partially explained by differential soil characteristics which may be related to insect pressure. While adoption of genetically engineered crops has the potential to mitigate downside risks from weeds and insects, we find no effects of adoption on yield variability nor do we find that adoption of presently available genetically engineered crops has led to increased resilience to heat or water stress. On average, across all counties, we find adoption of GE corn was associated with a 17 percent increase in corn yield.

Suggested Citation

  • Jayson L. Lusk & Jesse Tack & Nathan P. Hendricks, 2017. "Heterogeneous Yield Impacts from Adoption of Genetically Engineered Corn and the Importance of Controlling for Weather," NBER Working Papers 23519, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:23519
    Note: PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w23519.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Guanming Shi & Jean-paul Chavas & Kyle Stiegert, 2010. "An Analysis of the Pricing of Traits in the U.S. Corn Seed Market," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(5), pages 1324-1338.
    2. Edward D. Perry & GianCarlo Moschini & David A. Hennessy, 2016. "Testing for Complementarity: Glyphosate Tolerant Soybeans and Conservation Tillage," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(3), pages 765-784.
    3. john M. Antle, 2010. "Asymmetry, Partial Moments, and Production Risk," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(5), pages 1294-1309.
    4. Alston, Julian M. & Andersen, Matthew A. & Pardey, Philip G., 2015. "The Rise and Fall of U.S. Farm Productivity Growth, 1910–2007," Staff Papers 200927, University of Minnesota, Department of Applied Economics.
    5. Jesse Tack & Andrew Barkley & Lawton Lanier Nalley, 2015. "Estimating Yield Gaps With Limited Data: An Application to United States Wheat," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(5), pages 1464-1477.
    6. Barrows, Geoffrey & Sexton, Steven & Zilberman, David, 2014. "The impact of agricultural biotechnology on supply and land-use," Environment and Development Economics, Cambridge University Press, vol. 19(06), pages 676-703, December.
    7. Michael J. Roberts & Wolfram Schlenker, 2013. "Identifying Supply and Demand Elasticities of Agricultural Commodities: Implications for the US Ethanol Mandate," American Economic Review, American Economic Association, vol. 103(6), pages 2265-2295, October.
    8. Elizabeth Nolan & Paulo Santos, 2012. "The Contribution of Genetic Modification to Changes in Corn Yield in the United States," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1171-1188.
    9. Antle, John M, 1983. "Testing the Stochastic Structure of Production: A Flexible Moment-based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(3), pages 192-201, July.
    10. Marc F. Bellemare, 2015. "Rising Food Prices, Food Price Volatility, and Social Unrest," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 1-21.
    11. Dale W. Jorgenson & Mun S. Ho & Kevin J. Stiroh, 2005. "Productivity, Volume 3: Information Technology and the American Growth Resurgence," MIT Press Books, The MIT Press, edition 1, volume 3, number 0262101114, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:nbr:nberch:13939 is not listed on IDEAS

    More about this item

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:23519. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.