IDEAS home Printed from https://ideas.repec.org/a/cup/endeec/v19y2014i06p676-703_00.html

The impact of agricultural biotechnology on supply and land-use

Author

Listed:
  • Barrows, Geoffrey
  • Sexton, Steven
  • Zilberman, David

Abstract

We use aggregate data to estimate supply, price, land-use, and greenhouse gas impacts of genetically engineered (GE) seed adoption due both to increased yield per hectare (intensive margin) and increased planted area (extensive margin). An adoption model with profitability and risk considerations distinguishes between the two margins, where the intensive margin results from direct ‘gene’ impacts and higher complimentary input use, and the extensive margin reflects the growing range of lands that become profitable with the GE technology. We identify yield increases from cross-country time series variation in GE adoption share within the main GE crops – cotton, corn and soybeans. We find that GE increased yields 34 per cent for cotton, 12 per cent for corn and 3 per cent for soybeans. We then estimate the quantity of extensive margin lands from year-to-year changes in traditional and GE planted area. If all production on the extensive margin is attributed to GE technology, the supply effect of GE increases from 5 per cent to 12 per cent for corn, 15 per cent to 20 per cent for cotton, and 2 per cent to 40 per cent for soybeans, generating significant downward pressure on prices. Finally, we compute ‘saved’ lands and greenhouse gases as the difference between observed hectarage per crop and counterfactual hectarage needed to generate the same output without the yield boost from GE. We find that altogether, GE saved 13 million hectares of land from conversion to agriculture in 2010, and averted emissions are equivalent to roughly one-eighth of the annual emissions from automobiles in the US.

Suggested Citation

  • Barrows, Geoffrey & Sexton, Steven & Zilberman, David, 2014. "The impact of agricultural biotechnology on supply and land-use," Environment and Development Economics, Cambridge University Press, vol. 19(6), pages 676-703, December.
  • Handle: RePEc:cup:endeec:v:19:y:2014:i:06:p:676-703_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1355770X14000400/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frederik Noack & Dennis Engist & Josephine Gantois & Vasundhara Gaur & Batoule F Hyjazie & Ashley Larsen & Leithen M’gonigle & Anouch Missirian & Matin Qaim & Risa D Sargent & Eduardo Souza-Rodrigues , 2024. "Environmental impacts of genetically modified crops [Impacts environnementaux des cultures OGM]," Post-Print hal-04787948, HAL.
    2. William Brock & Anastasios Xepapadeas, 2025. "Land Use, Climate Change and the Emergence of Infectious Diseases: A Synthesis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 88(3), pages 795-854, March.
    3. Weisenfeld, Ursula & Hauerwaas, Antoniya & Elshiewy, Ossama & Halder, Pradipta & Wesseler, Justus & Cingiz, Kutay & Broer, Inge, 2023. "Beyond plastic – Consumers prefer food packaging derived from genetically modified plants," Research Policy, Elsevier, vol. 52(10).
    4. William Brock & Anastasios Xepapadeas, 2022. "Climate Change, Natural World Preservation and the Emergence and Containment of Infectious Diseases," DEOS Working Papers 2232, Athens University of Economics and Business.
    5. Fan, Linlin & Stevens, Andrew W. & Thomas, Betty, 2022. "Consumer purchasing response to mandatory genetically engineered labeling," Food Policy, Elsevier, vol. 110(C).
    6. Taheripour, Farzad & Mahaffey, Harry & Tyner, Wallace E., 2015. "Evaluation of Economic, Land Use, and Land Use Emission Impacts of Substituting Non-GMO Crops for GMO in the US," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 204907, Agricultural and Applied Economics Association.
    7. Oliveira, Andréa Leda Ramos de & Silveira, José Maria Ferreira Jardim da, . "Restructuring of the Corn Supply Chain in Brazil: Facing the Challenges in Logistics or Regulation of Biotechnology," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 16(4), pages 1-24.
    8. Scheitrum, Daniel & Schaefer, K. Aleks & Nes, Kjersti, 2020. "Realized and potential global production effects from genetic engineering," Food Policy, Elsevier, vol. 93(C).
    9. Mahaffey, Harry & Taheripour, Farzad & Tyner, Wallace E., 2016. "Evaluating the Economic and Environmental Impacts of a Global GMO Ban," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235591, Agricultural and Applied Economics Association.
    10. Linda Ferrari, 2022. "Farmers' attitude toward CRISPR/Cas9: The case of blast resistant rice," Agribusiness, John Wiley & Sons, Ltd., vol. 38(1), pages 175-194, January.
    11. William Brock & Anastasios Xepapadeas, 2023. "Natural world preservation and infectious diseases: Land-use, climate change and innovation," DEOS Working Papers 2319, Athens University of Economics and Business.
    12. David Zilberman & Tim G. Holland & Itai Trilnick, 2018. "Agricultural GMOs—What We Know and Where Scientists Disagree," Sustainability, MDPI, vol. 10(5), pages 1-19, May.
    13. Ortiz-Bobea, Ariel & Tack, Jesse B., "undated". "Another genetic yield revolution is needed to offset climate change effects on U.S. maize," 2018 Annual Meeting, August 5-7, Washington, D.C. 274380, Agricultural and Applied Economics Association.
    14. Jayson L. Lusk & Jesse Tack & Nathan P. Hendricks, 2018. "Heterogeneous Yield Impacts from Adoption of Genetically Engineered Corn and the Importance of Controlling for Weather," NBER Chapters, in: Agricultural Productivity and Producer Behavior, pages 11-39, National Bureau of Economic Research, Inc.
    15. Wesseler, Justus, 2014. "Biotechnologies and agrifood strategies: opportunities, threats and economic implications," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 3(3), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:endeec:v:19:y:2014:i:06:p:676-703_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ede .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.