IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v72y1996i1-2p251-274.html
   My bibliography  Save this article

Two flexible functional form approaches for approximating the Lorenz curve

Author

Listed:
  • Ryu, Hang K.
  • Slottje, Daniel J.

Abstract

No abstract is available for this item.

Suggested Citation

  • Ryu, Hang K. & Slottje, Daniel J., 1996. "Two flexible functional form approaches for approximating the Lorenz curve," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 251-274.
  • Handle: RePEc:eee:econom:v:72:y:1996:i:1-2:p:251-274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4076(94)01722-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McDonald, James B, 1984. "Some Generalized Functions for the Size Distribution of Income," Econometrica, Econometric Society, vol. 52(3), pages 647-663, May.
    2. Kakwani, N C & Podder, N, 1973. "On the Estimation of Lorenz Curves from Grouped Observations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(2), pages 278-292, June.
    3. Zellner, Arnold & Highfield, Richard A., 1988. "Calculation of maximum entropy distributions and approximation of marginalposterior distributions," Journal of Econometrics, Elsevier, vol. 37(2), pages 195-209, February.
    4. Ryu, Hang K., 1993. "Maximum entropy estimation of density and regression functions," Journal of Econometrics, Elsevier, vol. 56(3), pages 397-440, April.
    5. Beach, Charles M & Richmond, James, 1985. "Joint Confidence Intervals for Income Shares and Lorenz Curves," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(2), pages 439-450, June.
    6. Bishop, John A & Chakraborti, S & Thistle, Paul D, 1989. "Asymptotically Distribution-Free Statistical Inference for Generalized Lorenz Curves," The Review of Economics and Statistics, MIT Press, vol. 71(4), pages 725-727, November.
    7. Gastwirth, Joseph L, 1971. "A General Definition of the Lorenz Curve," Econometrica, Econometric Society, vol. 39(6), pages 1037-1039, November.
    8. Geweke, John, 1986. "Exact Inference in the Inequality Constrained Normal Linear Regression Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(2), pages 127-141, April.
    9. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    10. Basmann, R. L. & Hayes, K. J. & Slottje, D. J. & Johnson, J. D., 1990. "A general functional form for approximating the Lorenz curve," Journal of Econometrics, Elsevier, vol. 43(1-2), pages 77-90.
    11. Charles M. Beach & Russell Davidson, 1983. "Distribution-Free Statistical Inference with Lorenz Curves and Income Shares," Review of Economic Studies, Oxford University Press, vol. 50(4), pages 723-735.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:72:y:1996:i:1-2:p:251-274. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.