IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v42y2014i4p761-780.html
   My bibliography  Save this article

Distorted Lorenz curves: models and comparisons

Author

Listed:
  • Miguel Sordo

    ()

  • Jorge Navarro
  • José Sarabia

Abstract

The economic literature contains many parametric models for the Lorenz curve. A number of these models can be obtained by distorting an original Lorenz curve $$L$$ L by a function $$h$$ h , giving rise to a distorted Lorenz curve $${\widetilde{L}}=h\circ L$$ L ~ = h ∘ L . In this paper, we study, in a unified framework, this family of curves. First, we explore the role of these curves in the context of the axiomatic structure of Aaberge ( 2001 ) for orderings on the set of Lorenz curves. Then, we describe some particular models and investigate how changes in the parameters in the baseline Lorenz curve $$L$$ L affect the transformed curve $${\widetilde{L}}$$ L ~ . Our results are stated in terms of preservation of some stochastic orders between two Lorenz curves when both are distorted by a common function. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Miguel Sordo & Jorge Navarro & José Sarabia, 2014. "Distorted Lorenz curves: models and comparisons," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 761-780, April.
  • Handle: RePEc:spr:sochwe:v:42:y:2014:i:4:p:761-780
    DOI: 10.1007/s00355-013-0754-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00355-013-0754-y
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Villasenor, JoseA. & Arnold, Barry C., 1989. "Elliptical Lorenz curves," Journal of Econometrics, Elsevier, vol. 40(2), pages 327-338, February.
    2. Chateauneuf, Alain & Cohen, Michele & Meilijson, Isaac, 2004. "Four notions of mean-preserving increase in risk, risk attitudes and applications to the rank-dependent expected utility model," Journal of Mathematical Economics, Elsevier, vol. 40(5), pages 547-571, August.
    3. Navarro, Jorge & Rychlik, Tomasz, 2010. "Comparisons and bounds for expected lifetimes of reliability systems," European Journal of Operational Research, Elsevier, vol. 207(1), pages 309-317, November.
    4. Miguel Sordo & Héctor Ramos, 2007. "Characterization of stochastic orders by L-functionals," Statistical Papers, Springer, vol. 48(2), pages 249-263, April.
    5. Rothschild, Michael & Stiglitz, Joseph E., 1973. "Some further results on the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 6(2), pages 188-204, April.
    6. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    7. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    8. Claudio Zoli, 1999. "Intersecting generalized Lorenz curves and the Gini index," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(2), pages 183-196.
    9. Denneberg, Dieter, 1990. "Premium Calculation: Why Standard Deviation Should be Replaced by Absolute Deviation," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 20(02), pages 181-190, November.
    10. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 26(01), pages 71-92, May.
    11. Ogwang, Tomson & Gouranga Rao, U. L., 1996. "A new functional form for approximating the Lorenz curve," Economics Letters, Elsevier, vol. 52(1), pages 21-29, July.
    12. Gupta, Manash Ranjan, 1984. "Functional Form for Estimating the Lorenz Curve," Econometrica, Econometric Society, vol. 52(5), pages 1313-1314, September.
    13. Rasche, R H, et al, 1980. "Functional Forms for Estimating the Lorenz Curve: Comment," Econometrica, Econometric Society, vol. 48(4), pages 1061-1062, May.
    14. Kakwani, Nanak C & Podder, N, 1976. "Efficient Estimation of the Lorenz Curve and Associated Inequality Measures from Grouped Observations," Econometrica, Econometric Society, vol. 44(1), pages 137-148, January.
    15. José-María Sarabia & Enrique Castillo & Daniel J. Slottje, 2001. "An Exponential Family of Lorenz Curves," Southern Economic Journal, Southern Economic Association, vol. 67(3), pages 748-756, January.
    16. Gastwirth, Joseph L, 1971. "A General Definition of the Lorenz Curve," Econometrica, Econometric Society, vol. 39(6), pages 1037-1039, November.
    17. WANG, Zuxiang & SMYTH, Russell & NG, Yew-Kwang, 2009. "A new ordered family of Lorenz curves with an application to measuring income inequality and poverty in rural China," China Economic Review, Elsevier, vol. 20(2), pages 218-235, June.
    18. Donaldson, David & Weymark, John A., 1980. "A single-parameter generalization of the Gini indices of inequality," Journal of Economic Theory, Elsevier, vol. 22(1), pages 67-86, February.
    19. Rohde, Nicholas, 2009. "An alternative functional form for estimating the Lorenz curve," Economics Letters, Elsevier, vol. 105(1), pages 61-63, October.
    20. Zuxiang Wang & Yew‐Kwang Ng & Russell Smyth, 2011. "A General Method For Creating Lorenz Curves," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 57(3), pages 561-582, September.
    21. Jose-Mari Sarabia, 1997. "A hierarchy of lorenz curves based on the generalized tukey's lambda distribution," Econometric Reviews, Taylor & Francis Journals, vol. 16(3), pages 305-320.
    22. Muliere, Pietro & Scarsini, Marco, 1989. "A note on stochastic dominance and inequality measures," Journal of Economic Theory, Elsevier, vol. 49(2), pages 314-323, December.
    23. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    24. Holm, Juhani, 1993. "Maximum entropy Lorenz curves," Journal of Econometrics, Elsevier, vol. 59(3), pages 377-389, October.
    25. Basmann, R. L. & Hayes, K. J. & Slottje, D. J. & Johnson, J. D., 1990. "A general functional form for approximating the Lorenz curve," Journal of Econometrics, Elsevier, vol. 43(1-2), pages 77-90.
    26. Ogwang, Tomson & Rao, U. L. Gouranga, 2000. "Hybrid models of the Lorenz curve," Economics Letters, Elsevier, vol. 69(1), pages 39-44, October.
    27. Arnold, Barry C, et al, 1987. "Generating Ordered Families of Lorenz Curves by Strongly Unimodal Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(2), pages 305-308, April.
    28. Chotikapanich, Duangkamon, 1993. "A comparison of alternative functional forms for the Lorenz curve," Economics Letters, Elsevier, vol. 41(2), pages 129-138.
    29. Rolf Aaberge, 2000. "Axiomatic characterization of the Gini coefficient and Lorenz," ICER Working Papers 06-2000, ICER - International Centre for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:metrik:v:81:y:2018:i:4:d:10.1007_s00184-018-0651-6 is not listed on IDEAS
    2. Greselin, Francesca & Zitikis, Ricardas, 2015. "Measuring economic inequality and risk: a unifying approach based on personal gambles, societal preferences and references," MPRA Paper 65892, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:42:y:2014:i:4:p:761-780. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.