IDEAS home Printed from
   My bibliography  Save this article

Characterizations of Lorenz curves and income distributions


  • Rolf Aaberge

    (Research Department, Statistics Norway, Kongens gt. 6, P.b. 8131 Dep., N-0033 Oslo, Norway)


The purpose of this paper is to propose and justify the use of a few measures of inequality for summarizing the basic information provided by the Lorenz curve. By exploiting the fact that the Lorenz curve can be considered analogous to a cumulative distribution function it is demonstrated that the moments of the Lorenz curve generate a convenient family of inequality measures, called the Lorenz family of inequality measures. In particular, the first few moments, which often capture the essential features of a distribution function, are proposed as the primary quantities for summarizing the information content of the Lorenz curve. Employed together these measures, which include the Gini coefficient, also provide essential information on the shape of the income distribution. Relying on the principle of diminishing transfers it is shown that the Lorenz measures, as opposed to the Atkinson measures, have transfer-sensitivity properties that depend on the shape of the income distribution.

Suggested Citation

  • Rolf Aaberge, 2000. "Characterizations of Lorenz curves and income distributions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 17(4), pages 639-653.
  • Handle: RePEc:spr:sochwe:v:17:y:2000:i:4:p:639-653
    Note: Received: 20 July 1998/Accepted: 10 September 1999

    Download full text from publisher

    File URL:
    Download Restriction: Access to the full text of the articles in this series is restricted

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:17:y:2000:i:4:p:639-653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.