IDEAS home Printed from https://ideas.repec.org/p/ssb/dispap/360.html
   My bibliography  Save this paper

Mean-Spread-Preserving Transformations

Author

Listed:

Abstract

The purpose of this paper is to define various mean-spread-preserving transformations, which can be considered as generalized versions of the mean-Gini-preserving transformation. The mean-Gini-preserving transformation, which was introduced independently by Zoli (1997, 2002) and Aaberge (2000b), is a combination of progressive and regressive transfers that leaves the Gini coefficient unchanged. It will be demonstrated that the various mean-spread-preserving transformations form a useful basis for judging the normative significance of two alternative sequences of nested Lorenz dominance criteria that can be used to rank Lorenz curves in situations where the Lorenz curves intersect. The two alternative sequences of Lorenz dominance criteria suggest two alternative strategies for increasing the number of Lorenz curves that can be strictly ordered; one that places more emphasis on changes that occur in the lower part of the income distribution and the other that places more emphasis on changes that occur in the upper part of the income distribution. Furthermore, it is demonstrated that the sequences of dominance criteria characterize two separate systems of nested subfamilies of inequality measures and thus provide a method for identifying the least restrictive social preferences required to reach an unambiguous ranking of a given set of Lorenz curves. Scaling up the introduced Lorenz dominance relations of this paper by the mean income ì and replacing the rank-dependent measures of inequality JP with the rank-dependent social welfare functions WP = m(1- JP), it can be demonstrated that the present results also apply to the generalized Lorenz curve and moreover provide convenient characterizations of the corresponding social welfare orderings.

Suggested Citation

  • Rolf Aaberge, 2003. "Mean-Spread-Preserving Transformations," Discussion Papers 360, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:360
    as

    Download full text from publisher

    File URL: https://www.ssb.no/a/publikasjoner/pdf/DP/dp360.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Michael Sattinger (ed.), 2001. "Income Distribution," Books, Edward Elgar Publishing, volume 0, number 2018.
    2. Rothschild, Michael & Stiglitz, Joseph E., 1973. "Some further results on the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 6(2), pages 188-204, April.
    3. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    4. Chew, Soo Hong, 1983. "A Generalization of the Quasilinear Mean with Applications to the Measurement of Income Inequality and Decision Theory Resolving the Allais Paradox," Econometrica, Econometric Society, vol. 51(4), pages 1065-1092, July.
    5. Wang, Shaun S. & Young, Virginia R., 1998. "Ordering risks: Expected utility theory versus Yaari's dual theory of risk," Insurance: Mathematics and Economics, Elsevier, vol. 22(2), pages 145-161, June.
    6. Davies James & Hoy Michael, 1994. "The Normative Significance of Using Third-Degree Stochastic Dominance in Comparing Income Distributions," Journal of Economic Theory, Elsevier, vol. 64(2), pages 520-530, December.
    7. Rolf Aaberge, 2009. "Ranking intersecting Lorenz curves," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 33(2), pages 235-259, August.
    8. Kolm, Serge-Christophe, 1976. "Unequal inequalities. II," Journal of Economic Theory, Elsevier, vol. 13(1), pages 82-111, August.
    9. Claudio Zoli, 1999. "Intersecting generalized Lorenz curves and the Gini index," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(2), pages 183-196.
    10. Fields, Gary S & Fei, John C H, 1978. "On Inequality Comparisons," Econometrica, Econometric Society, vol. 46(2), pages 303-316, March.
    11. Donaldson, David & Weymark, John A., 1983. "Ethically flexible gini indices for income distributions in the continuum," Journal of Economic Theory, Elsevier, vol. 29(2), pages 353-358, April.
    12. Aaberge, Rolf, 2001. "Axiomatic Characterization of the Gini Coefficient and Lorenz Curve Orderings," Journal of Economic Theory, Elsevier, vol. 101(1), pages 115-132, November.
    13. Gajdos, Thibault, 2002. "Measuring Inequalities without Linearity in Envy: Choquet Integrals for Symmetric Capacities," Journal of Economic Theory, Elsevier, vol. 106(1), pages 190-200, September.
    14. Mehran, Farhad, 1976. "Linear Measures of Income Inequality," Econometrica, Econometric Society, vol. 44(4), pages 805-809, July.
    15. Kolm, Serge-Christophe, 1976. "Unequal inequalities. I," Journal of Economic Theory, Elsevier, vol. 12(3), pages 416-442, June.
    16. Menezes, C & Geiss, C & Tressler, J, 1980. "Increasing Downside Risk," American Economic Review, American Economic Association, vol. 70(5), pages 921-932, December.
    17. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    18. Yaari, Menahem E., 1988. "A controversial proposal concerning inequality measurement," Journal of Economic Theory, Elsevier, vol. 44(2), pages 381-397, April.
    19. Donaldson, David & Weymark, John A., 1980. "A single-parameter generalization of the Gini indices of inequality," Journal of Economic Theory, Elsevier, vol. 22(1), pages 67-86, February.
    20. Ebert, Udo, 1987. "Size and distribution of incomes as determinants of social welfare," Journal of Economic Theory, Elsevier, vol. 41(1), pages 23-33, February.
    21. Shorrocks, Anthony F, 1983. "Ranking Income Distributions," Economica, London School of Economics and Political Science, vol. 50(197), pages 3-17, February.
    22. Yitzhaki, Shlomo, 1983. "On an Extension of the Gini Inequality Index," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(3), pages 617-628, October.
    23. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    24. Sen, Amartya K, 1976. "Poverty: An Ordinal Approach to Measurement," Econometrica, Econometric Society, vol. 44(2), pages 219-231, March.
    25. Fishburn, Peter C. & Willig, Robert D., 1984. "Transfer principles in income redistribution," Journal of Public Economics, Elsevier, vol. 25(3), pages 323-328, December.
    26. Muliere, Pietro & Scarsini, Marco, 1989. "A note on stochastic dominance and inequality measures," Journal of Economic Theory, Elsevier, vol. 49(2), pages 314-323, December.
    27. Rolf Aaberge, 2000. "Characterizations of Lorenz curves and income distributions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 17(4), pages 639-653.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    The Lorenz curve; the Gini coefficient; rank-dependent measures of inequality; generalized Gini families of inequality measures; mean-spread-preserving transformations.;

    JEL classification:

    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:360. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (L Maasø). General contact details of provider: http://edirc.repec.org/data/ssbgvno.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.