IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/1215.html
   My bibliography  Save this paper

Estimating Lorenz Curves Using a Dirichlet Distribution

Author

Listed:
  • Duangkamon Chotikapanich

    (Curtin University of Technology)

  • William E. Griffiths

    (University of New England)

Abstract

The Lorenz curve relates the cumulative proportion of income to the cumulative proportion of population. When a particular functional form of the Lorenz curve is specified it is typically estimated by linear or nonlinear least squares assuming that the error terms are independently and normally distributed. Observations on cumulative proportions are clearly neither independent nor normally distributed. This paper proposes and applies a new methodology which recognizes the cumulative proportional nature of the Lorenz curve data by assuming that the proportion of income is distributed as a Dirichlet distribution. Five Lorenz-curve specifications were used to demonstrate the technique. Once a likelihood function and the posterior probability density function for each specification are derived we can use maximum likelihood or Bayesian estimation to estimate the parameters. Maximum likelihood estimates and Bayesian posterior probability density functions for the Gini coefficient are also obtained for each Lorenz-curve specification.

Suggested Citation

  • Duangkamon Chotikapanich & William E. Griffiths, 2000. "Estimating Lorenz Curves Using a Dirichlet Distribution," Econometric Society World Congress 2000 Contributed Papers 1215, Econometric Society.
  • Handle: RePEc:ecm:wc2000:1215
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/1215.pdf
    File Function: main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ryu, Hang K. & Slottje, Daniel J., 1996. "Two flexible functional form approaches for approximating the Lorenz curve," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 251-274.
    2. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    3. McDonald, James B, 1984. "Some Generalized Functions for the Size Distribution of Income," Econometrica, Econometric Society, vol. 52(3), pages 647-663, May.
    4. Shorrocks, Anthony F, 1983. "Ranking Income Distributions," Economica, London School of Economics and Political Science, vol. 50(197), pages 3-17, February.
    5. Kakwani, N C & Podder, N, 1973. "On the Estimation of Lorenz Curves from Grouped Observations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(2), pages 278-292, June.
    6. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", pages 125-132.
    7. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 133-152.
    8. Rasche, R H, et al, 1980. "Functional Forms for Estimating the Lorenz Curve: Comment," Econometrica, Econometric Society, vol. 48(4), pages 1061-1062, May.
    9. Datt, Gaurav, 1998. "Computational tools for poverty measurement and analysis," FCND discussion papers 50, International Food Policy Research Institute (IFPRI).
    10. Basmann, R. L. & Hayes, K. J. & Slottje, D. J. & Johnson, J. D., 1990. "A general functional form for approximating the Lorenz curve," Journal of Econometrics, Elsevier, vol. 43(1-2), pages 77-90.
    11. Kakwani, Nanak C & Podder, N, 1976. "Efficient Estimation of the Lorenz Curve and Associated Inequality Measures from Grouped Observations," Econometrica, Econometric Society, vol. 44(1), pages 137-148, January.
    12. Chotikapanich, Duangkamon, 1993. "A comparison of alternative functional forms for the Lorenz curve," Economics Letters, Elsevier, vol. 41(2), pages 129-138.
    13. Gastwirth, Joseph L, 1972. "The Estimation of the Lorenz Curve and Gini Index," The Review of Economics and Statistics, MIT Press, vol. 54(3), pages 306-316, August.
    14. Woodland, A. D., 1979. "Stochastic specification and the estimation of share equations," Journal of Econometrics, Elsevier, vol. 10(3), pages 361-383, August.
    15. Bishop, John A & Chakraborti, S & Thistle, Paul D, 1989. "Asymptotically Distribution-Free Statistical Inference for Generalized Lorenz Curves," The Review of Economics and Statistics, MIT Press, vol. 71(4), pages 725-727, November.
    16. Charles M. Beach & Russell Davidson, 1983. "Distribution-Free Statistical Inference with Lorenz Curves and Income Shares," Review of Economic Studies, Oxford University Press, vol. 50(4), pages 723-735.
    17. Kakwani, Nanak, 1980. "On a Class of Poverty Measures," Econometrica, Econometric Society, vol. 48(2), pages 437-446, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heshmati, Almas, 2004. "A Review of Decomposition of Income Inequality," IZA Discussion Papers 1221, Institute for the Study of Labor (IZA).
    2. Heshmati, Almas, 2004. "Inequalities and Their Measurement," IZA Discussion Papers 1219, Institute for the Study of Labor (IZA).
    3. T. Kämpke & R. Pestel & F.J. Radermacher, 2003. "A Computational Concept for Normative Equity," European Journal of Law and Economics, Springer, vol. 15(2), pages 129-163, March.
    4. Wang, Dongliang & Zhao, Yichuan & Gilmore, Dirk W., 2016. "Jackknife empirical likelihood confidence interval for the Gini index," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 289-295.
    5. Gholamreza Hajargasht & William E. Griffiths, 2016. "Inference for Lorenz Curves," Department of Economics - Working Papers Series 2022, The University of Melbourne.
    6. Xiaofeng Lv & Gupeng Zhang & Xinkuo Xu & Qinghai Li, 0. "Bootstrap-calibrated empirical likelihood confidence intervals for the difference between two Gini indexes," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 0, pages 1-22.
    7. Chiara Gigliarano & Pietro Muliere, 2013. "Estimating the Lorenz curve and Gini index with right censored data: a Polya tree approach," METRON, Springer;Sapienza Università di Roma, vol. 71(2), pages 105-122, September.
    8. E. Gómez-Déniz, 2016. "A family of arctan Lorenz curves," Empirical Economics, Springer, vol. 51(3), pages 1215-1233, November.
    9. José M. R. Murteira & Joaquim J. S. Ramalho, 2016. "Regression Analysis of Multivariate Fractional Data," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 515-552, April.
    10. Hasegawa, Hikaru & Kozumi, Hideo, 2003. "Estimation of Lorenz curves: a Bayesian nonparametric approach," Journal of Econometrics, Elsevier, vol. 115(2), pages 277-291, August.

    More about this item

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1215. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.