IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/1215.html

Estimating Lorenz Curves Using a Dirichlet Distribution

Author

Listed:
  • Duangkamon Chotikapanich

    (Curtin University of Technology)

  • William E. Griffiths

    (University of New England)

Abstract

The Lorenz curve relates the cumulative proportion of income to the cumulative proportion of population. When a particular functional form of the Lorenz curve is specified it is typically estimated by linear or nonlinear least squares assuming that the error terms are independently and normally distributed. Observations on cumulative proportions are clearly neither independent nor normally distributed. This paper proposes and applies a new methodology which recognizes the cumulative proportional nature of the Lorenz curve data by assuming that the proportion of income is distributed as a Dirichlet distribution. Five Lorenz-curve specifications were used to demonstrate the technique. Once a likelihood function and the posterior probability density function for each specification are derived we can use maximum likelihood or Bayesian estimation to estimate the parameters. Maximum likelihood estimates and Bayesian posterior probability density functions for the Gini coefficient are also obtained for each Lorenz-curve specification.

Suggested Citation

  • Duangkamon Chotikapanich & William E. Griffiths, 2000. "Estimating Lorenz Curves Using a Dirichlet Distribution," Econometric Society World Congress 2000 Contributed Papers 1215, Econometric Society.
  • Handle: RePEc:ecm:wc2000:1215
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/1215.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Heshmati, Almas, 2004. "A Review of Decomposition of Income Inequality," IZA Discussion Papers 1221, Institute of Labor Economics (IZA).
    3. Heshmati, Almas, 2004. "Inequalities and Their Measurement," IZA Discussion Papers 1219, Institute of Labor Economics (IZA).
    4. Xiaofeng Lv & Gupeng Zhang & Xinkuo Xu & Qinghai Li, 2017. "Bootstrap-calibrated empirical likelihood confidence intervals for the difference between two Gini indexes," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 15(2), pages 195-216, June.
    5. Satya Paul & Sriram Shankar, 2020. "An alternative single parameter functional form for Lorenz curve," Empirical Economics, Springer, vol. 59(3), pages 1393-1402, September.
    6. Gholamreza Hajargasht & William E. Griffiths, 2016. "Inference for Lorenz Curves," Department of Economics - Working Papers Series 2022, The University of Melbourne.
    7. Olivier Courtois & Xia Xu, 2024. "Efficient portfolios and extreme risks: a Pareto–Dirichlet approach," Annals of Operations Research, Springer, vol. 335(1), pages 261-292, April.
    8. Mathias Silva, 2023. "Parametric estimation of income distributions using grouped data: an Approximate Bayesian Computation approach [Working Papers / Documents de travail]," Working Papers hal-04066544, HAL.
    9. Enora Belz, 2019. "Estimating Inequality Measures from Quantile Data," Economics Working Paper Archive (University of Rennes & University of Caen) 2019-09, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    10. Khosravi Tanak, A. & Mohtashami Borzadaran, G.R. & Ahmadi, Jafar, 2018. "New functional forms of Lorenz curves by maximizing Tsallis entropy of income share function under the constraint on generalized Gini index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 280-288.
    11. Enora Belz, 2019. "Estimating Inequality Measures from Quantile Data," Working Papers halshs-02320110, HAL.
    12. E. Gómez-Déniz, 2016. "A family of arctan Lorenz curves," Empirical Economics, Springer, vol. 51(3), pages 1215-1233, November.
    13. Xiaobo Shen & Pingsheng Dai, 2024. "A regression method for estimating Gini index by decile," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 11(1), pages 1-8, December.
    14. José M. R. Murteira & Joaquim J. S. Ramalho, 2016. "Regression Analysis of Multivariate Fractional Data," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 515-552, April.
    15. Genya Kobayashi & Kazuhiko Kakamu, 2019. "Approximate Bayesian computation for Lorenz curves from grouped data," Computational Statistics, Springer, vol. 34(1), pages 253-279, March.
    16. T. Kämpke & R. Pestel & F.J. Radermacher, 2003. "A Computational Concept for Normative Equity," European Journal of Law and Economics, Springer, vol. 15(2), pages 129-163, March.
    17. Ashraf Gouda & Tamás Szántai, 2010. "On numerical calculation of probabilities according to Dirichlet distribution," Annals of Operations Research, Springer, vol. 177(1), pages 185-200, June.
    18. Wang, Dongliang & Zhao, Yichuan & Gilmore, Dirk W., 2016. "Jackknife empirical likelihood confidence interval for the Gini index," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 289-295.
    19. Chiara Gigliarano & Pietro Muliere, 2013. "Estimating the Lorenz curve and Gini index with right censored data: a Polya tree approach," METRON, Springer;Sapienza Università di Roma, vol. 71(2), pages 105-122, September.
    20. Hasegawa, Hikaru & Kozumi, Hideo, 2003. "Estimation of Lorenz curves: a Bayesian nonparametric approach," Journal of Econometrics, Elsevier, vol. 115(2), pages 277-291, August.
    21. Xiaofeng Lv & Gupeng Zhang & Xinkuo Xu & Qinghai Li, 2017. "Bootstrap-calibrated empirical likelihood confidence intervals for the difference between two Gini indexes," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 15(2), pages 195-216, June.
    22. Andrew C. Chang & Phillip Li & Shawn M. Martin, 2018. "Comparing cross‐country estimates of Lorenz curves using a Dirichlet distribution across estimators and datasets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 473-478, April.

    More about this item

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.