IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1811.11603.html
   My bibliography  Save this paper

Distribution Regression with Sample Selection, with an Application to Wage Decompositions in the UK

Author

Listed:
  • Victor Chernozhukov
  • Iv'an Fern'andez-Val
  • Siyi Luo

Abstract

We develop a distribution regression model under endogenous sample selection. This model is a semiparametric generalization of the Heckman selection model that accommodates much richer patterns of heterogeneity in the selection process and effect of the covariates. The model applies to continuous, discrete and mixed outcomes. We study the identification of the model, and develop a computationally attractive two-step method to estimate the model parameters, where the first step is a probit regression for the selection equation and the second step consists of multiple distribution regressions with selection corrections for the outcome equation. We construct estimators of functionals of interest such as actual and counterfactual distributions of latent and observed outcomes via plug-in rule. We derive functional central limit theorems for all the estimators and show the validity of multiplier bootstrap to carry out functional inference. We apply the methods to wage decompositions in the UK using new data. Here we decompose the difference between the male and female wage distributions into four effects: composition, wage structure, selection structure and selection sorting. After controlling for endogenous employment selection, we still find substantial gender wage gap -- ranging from 21% to 40% throughout the (latent) offered wage distribution that is not explained by observable labor market characteristics. We also uncover positive sorting for single men and negative sorting for married women that accounts for a substantive fraction of the gender wage gap at the top of the distribution. These findings can be interpreted as evidence of assortative matching in the marriage market and glass-ceiling in the labor market.

Suggested Citation

  • Victor Chernozhukov & Iv'an Fern'andez-Val & Siyi Luo, 2018. "Distribution Regression with Sample Selection, with an Application to Wage Decompositions in the UK," Papers 1811.11603, arXiv.org, revised Nov 2020.
  • Handle: RePEc:arx:papers:1811.11603
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1811.11603
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Charles F. Manski, 1989. "Anatomy of the Selection Problem," Journal of Human Resources, University of Wisconsin Press, vol. 24(3), pages 343-360.
    2. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    3. Victor Chernozhukov & Iván Fernández-Val & Blaise Melly & Kaspar Wüthrich, 2020. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 123-137, January.
    4. Chamberlain, Gary, 1986. "Asymptotic efficiency in semi-parametric models with censoring," Journal of Econometrics, Elsevier, vol. 32(2), pages 189-218, July.
    5. Maddala,G. S., 1986. "Limited-Dependent and Qualitative Variables in Econometrics," Cambridge Books, Cambridge University Press, number 9780521338257, December.
    6. Derek Neal, 2004. "The Measured Black-White Wage Gap among Women Is Too Small," Journal of Political Economy, University of Chicago Press, vol. 112(S1), pages 1-28, February.
    7. R. F. Engle & D. McFadden (ed.), 1986. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 4, number 4.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel A. Delgado & Andr'es Garc'ia-Suaza & Pedro H. C. Sant'Anna, 2019. "Distribution Regression in Duration Analysis: an Application to Unemployment Spells," Papers 1904.06185, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentina Corradi & Daniel Gutknecht, 2019. "Testing for Quantile Sample Selection," Papers 1907.07412, arXiv.org, revised Jan 2021.
    2. Claudia Olivetti & Barbara Petrongolo, 2008. "Unequal Pay or Unequal Employment? A Cross-Country Analysis of Gender Gaps," Journal of Labor Economics, University of Chicago Press, vol. 26(4), pages 621-654, October.
    3. Lanot, Gauthier & Walker, Ian, 1998. "The union/non-union wage differential: An application of semi-parametric methods," Journal of Econometrics, Elsevier, vol. 84(2), pages 327-349, June.
    4. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    5. Martin Huber & Giovanni Mellace, 2015. "Sharp Bounds on Causal Effects under Sample Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 129-151, February.
    6. Arun Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2012. "Inference for best linear approximations to set identified functions," CeMMAP working papers CWP43/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Pedro Carneiro & Sokbae Lee, 2011. "Trends in Quality-Adjusted Skill Premia in the United States, 1960-2000," American Economic Review, American Economic Association, vol. 101(6), pages 2309-2349, October.
    8. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    9. Chi, Wei & Li, Bo, 2014. "Trends in China’s gender employment and pay gap: Estimating gender pay gaps with employment selection," Journal of Comparative Economics, Elsevier, vol. 42(3), pages 708-725.
    10. [{uri:http://thesaurus.iadb.org/idbthesauri/b24c0ba9-9c63-4e59-bb11-f673667bdb34,value:Christelis, Dimitris},{uri:http://thesaurus.iadb.org/idbthesauri/1e969ce9-1374-4d68-b668-65db2a628ba4,value:Messi, 2019. "Partial Identification of Population Average and Quantile Treatment Effects in Observational Data under Sample Selection," IDB Publications (Working Papers) 9520, Inter-American Development Bank.
    11. Charles F. Manski, 2015. "Communicating Uncertainty in Official Economic Statistics: An Appraisal Fifty Years after Morgenstern," Journal of Economic Literature, American Economic Association, vol. 53(3), pages 631-653, September.
    12. Ho, Katherine & Rosen, Adam M., 2015. "Partial Identification in Applied Research: Benefits and Challenges," CEPR Discussion Papers 10883, C.E.P.R. Discussion Papers.
    13. Casey B. Mulligan & Yona Rubinstein, 2004. "The Closing of the Gender Gap as a Roy Model Illusion," NBER Working Papers 10892, National Bureau of Economic Research, Inc.
    14. Seneviratne, Prathi, 2020. "Gender wage inequality during Sri Lanka’s post-reform growth: A distributional analysis," World Development, Elsevier, vol. 129(C).
    15. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    16. Patricia Gallego Granados & Katharina Wrohlich, 2019. "Selection into Employment and the Gender Wage Gap across the Distribution and over Time," Discussion Papers of DIW Berlin 1838, DIW Berlin, German Institute for Economic Research.
    17. Aizawa, T.;, 2019. "Reviewing the Existing Evidence of the Conditional Cash Transfer in India through the Partial Identification Approach," Health, Econometrics and Data Group (HEDG) Working Papers 19/24, HEDG, c/o Department of Economics, University of York.
    18. Francine D. Blau & Lawrence M. Kahn, 2017. "The Gender Wage Gap: Extent, Trends, and Explanations," Journal of Economic Literature, American Economic Association, vol. 55(3), pages 789-865, September.
    19. Biavaschi, Costanza, 2016. "Recovering the counterfactual wage distribution with selective return migration," Labour Economics, Elsevier, vol. 38(C), pages 59-80.
    20. Pedro Carneiro & Sokbae (Simon) Lee, 2005. "Ability, sorting and wage inequality," CeMMAP working papers CWP16/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1811.11603. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.