IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A Heckman Selection- t Model

Listed author(s):
  • Yulia V. Marchenko
  • Marc G. Genton
Registered author(s):

    Sample selection arises often in practice as a result of the partial observability of the outcome of interest in a study. In the presence of sample selection, the observed data do not represent a random sample from the population, even after controlling for explanatory variables. That is, data are missing not at random. Thus, standard analysis using only complete cases will lead to biased results. Heckman introduced a sample selection model to analyze such data and proposed a full maximum likelihood estimation method under the assumption of normality. The method was criticized in the literature because of its sensitivity to the normality assumption. In practice, data, such as income or expenditure data, often violate the normality assumption because of heavier tails. We first establish a new link between sample selection models and recently studied families of extended skew-elliptical distributions. Then, this allows us to introduce a selection- t (SLt) model, which models the error distribution using a Student's t distribution. We study its properties and investigate the finite-sample performance of the maximum likelihood estimators for this model. We compare the performance of the SLt model to the conventional Heckman selection-normal (SLN) model and apply it to analyze ambulatory expenditures. Unlike the SLN model, our analysis using the SLt model provides statistical evidence for the existence of sample selection bias in these data. We also investigate the performance of the test for sample selection bias based on the SLt model and compare it with the performances of several tests used with the SLN model. Our findings indicate that the latter tests can be misleading in the presence of heavy-tailed data.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 497 (March)
    Pages: 304-317

    in new window

    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:304-317
    DOI: 10.1080/01621459.2012.656011
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:304-317. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.