IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/75-15.html
   My bibliography  Save this paper

Quantile selection models: with an application to understanding changes in wage inequality

Author

Listed:
  • Manuel Arellano

    (Institute for Fiscal Studies and Centre for Monetary and Financial Studies (CEMFI))

  • Stéphane Bonhomme

    (Institute for Fiscal Studies and University of Chicago)

Abstract

We propose a method to correct for sample selection in quantile regression models. Selection is modelled via the cumulative distribution function, or copula, of the percentile error in the outcome equation and the error in the participation decision. Copula parameters are estimated by minimizing a method-of-moments criterion. Given these parameter estimates, the percentile levels of the outcome are re-adjusted to correct for selection, and quantile parameters are estimated by minimizing a rotated “check” function. We apply the method to correct wage percentiles for selection into employment, using data for the UK for the period 1978-2000. We also extend the method to account for the presence of equilibrium e?ects when performing counterfactual exercises.

Suggested Citation

  • Manuel Arellano & Stéphane Bonhomme, 2015. "Quantile selection models: with an application to understanding changes in wage inequality," CeMMAP working papers CWP75/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:75/15
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/cemmap/wps/cwp751515.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard Blundell & Howard Reed & Thomas M. Stoker, 2003. "Interpreting Aggregate Wage Growth: The Role of Labor Market Participation," American Economic Review, American Economic Association, vol. 93(4), pages 1114-1131, September.
    2. Chen, Songnian & Khan, Shakeeb, 2003. "Semiparametric Estimation Of A Heteroskedastic Sample Selection Model," Econometric Theory, Cambridge University Press, vol. 19(6), pages 1040-1064, December.
    3. DiNardo, John & Fortin, Nicole M & Lemieux, Thomas, 1996. "Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach," Econometrica, Econometric Society, vol. 64(5), pages 1001-1044, September.
    4. David Card & Thomas Lemieux, 2001. "Can Falling Supply Explain the Rising Return to College for Younger Men? A Cohort-Based Analysis," The Quarterly Journal of Economics, Oxford University Press, vol. 116(2), pages 705-746.
    5. Patrick Kline & Andres Santos, 2013. "Sensitivity to missing data assumptions: Theory and an evaluation of the U.S. wage structure," Quantitative Economics, Econometric Society, vol. 4(2), pages 231-267, July.
    6. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    7. Picchio, Matteo & Mussida, Chiara, 2011. "Gender wage gap: A semi-parametric approach with sample selection correction," Labour Economics, Elsevier, vol. 18(5), pages 564-578, October.
    8. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606.
    9. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    10. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 487-535.
    11. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    12. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    13. Stéphane Bonhomme & Jean-Marc Robin, 2009. "Assessing the Equalizing Force of Mobility Using Short Panels: France, 1990-2000," Review of Economic Studies, Oxford University Press, vol. 76(1), pages 63-92.
    14. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    15. José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
    16. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590.
    17. Amanda Gosling & Stephen Machin & Costas Meghir, 2000. "The Changing Distribution of Male Wages in the U.K," Review of Economic Studies, Oxford University Press, vol. 67(4), pages 635-666.
    18. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    19. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-512, March.
    20. Derek Neal, 2004. "The Measured Black-White Wage Gap among Women Is Too Small," Journal of Political Economy, University of Chicago Press, vol. 112(S1), pages 1-28, February.
    21. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    22. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    23. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    24. Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
    25. Moshe Buchinsky, 2001. "Quantile regression with sample selection: Estimating women's return to education in the U.S," Empirical Economics, Springer, vol. 26(1), pages 87-113.
    26. James Heckman & Lance Lochner & Christopher Taber, 1998. "Explaining Rising Wage Inequality: Explanations With A Dynamic General Equilibrium Model of Labor Earnings With Heterogeneous Agents," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 1(1), pages 1-58, January.
    27. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    28. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    29. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    30. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    31. Albrecht, James & van Vuuren, Aico & Vroman, Susan, 2009. "Counterfactual distributions with sample selection adjustments: Econometric theory and an application to the Netherlands," Labour Economics, Elsevier, vol. 16(4), pages 383-396, August.
    32. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    33. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 555-574.
    34. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
    35. Donghoon Lee & Kenneth I. Wolpin, 2006. "Intersectoral Labor Mobility and the Growth of the Service Sector," Econometrica, Econometric Society, vol. 74(1), pages 1-46, January.
    36. Heckman, James J & Sedlacek, Guilherme, 1985. "Heterogeneity, Aggregation, and Market Wage Functions: An Empirical Model of Self-selection in the Labor Market," Journal of Political Economy, University of Chicago Press, vol. 93(6), pages 1077-1125, December.
    37. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    38. Claudia Olivetti & Barbara Petrongolo, 2008. "Unequal Pay or Unequal Employment? A Cross-Country Analysis of Gender Gaps," Journal of Labor Economics, University of Chicago Press, vol. 26(4), pages 621-654, October.
    39. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    40. Moshe Buchinsky, 1998. "The dynamics of changes in the female wage distribution in the USA: a quantile regression approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 1-30.
    41. Donald, Stephen G., 1995. "Two-step estimation of heteroskedastic sample selection models," Journal of Econometrics, Elsevier, vol. 65(2), pages 347-380, February.
    42. Martin Huber & Blaise Melly, 2015. "A Test of the Conditional Independence Assumption in Sample Selection Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1144-1168, November.
    43. Stéphane Bonhomme & Jean-Marc Robin, 2009. "Assessing the Equalizing Force of Mobility Using Short Panels: France, 1990-2000," SciencePo Working papers Main hal-01027423, HAL.
    44. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j008g6g0g is not listed on IDEAS
    45. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    46. Christian N. Brinch & Magne Mogstad & Matthew Wiswall, 2017. "Beyond LATE with a Discrete Instrument," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 985-1039.
    47. Murray D. Smith, 2003. "Modelling sample selection using Archimedean copulas," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 99-123, June.
    48. Stéphane Bonhomme & Jean-Marc Robin, 2009. "Assessing the Equalizing Force of Mobility Using Short Panels: France, 1990-2000," SciencePo Working papers hal-01027423, HAL.
    49. Francis Vella, 1998. "Estimating Models with Sample Selection Bias: A Survey," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 127-169.
    50. Mitali Das & Whitney K. Newey & Francis Vella, 2003. "Nonparametric Estimation of Sample Selection Models," Review of Economic Studies, Oxford University Press, vol. 70(1), pages 33-58.
    51. Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-318, May.
    52. Toru Kitagawa, 2009. "Identification region of the potential outcome distributions under instrument independence," CeMMAP working papers CWP30/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    53. Stéphane Bonhomme & Jean-Marc Robin, 2009. "Assessing the equalizing force of mobility using short panels: France, 1990-2000," Post-Print hal-00308801, HAL.
    54. Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 535-562, June.
    55. Stéphane Bonhomme & Jean-Marc Robin, 2009. "Assessing the equalizing force of mobility using short panels: France, 1990-2000," PSE-Ecole d'économie de Paris (Postprint) hal-00308801, HAL.
    56. Alexander Torgovitsky, 2015. "Identification of Nonseparable Models Using Instruments With Small Support," Econometrica, Econometric Society, vol. 83(3), pages 1185-1197, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. Manuel Arellano & Stéphane Bonhomme, 2017. "Sample Selection in Quantile Regression: A Survey," Working Papers wp2018_1702, CEMFI.
    3. Manuel Arellano & Stéphane Bonhomme, 2017. "Sample Selection in Quantile Regression: A Survey," Working Papers wp2017_1702, CEMFI.
    4. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    5. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    6. Pedro Carneiro & Sokbae (Simon) Lee, 2005. "Ability, sorting and wage inequality," CeMMAP working papers CWP16/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Victor Chernozhukov & Ivan Fernandez-Val & Siyi Luo, 2018. "Distribution regression with sample selection, with an application to wage decompositions in the UK," CeMMAP working papers CWP68/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    9. Victor Chernozhukov & Ivan Fernandez-Val & Siyi Luo, 2023. "Distribution regression with sample selection and UK wage decomposition," CeMMAP working papers 09/23, Institute for Fiscal Studies.
    10. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    11. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    12. Huber, Martin & Melly, Blaise, 2011. "Quantile Regression in the Presence of Sample Selection," Economics Working Paper Series 1109, University of St. Gallen, School of Economics and Political Science.
    13. Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.
    14. Bernd Fitzenberger & Jakob Lazzer, 2022. "Changing selection into full-time work and its effect on wage inequality in Germany," Empirical Economics, Springer, vol. 62(1), pages 247-277, January.
    15. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    16. Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
    17. Blaise Melly und Kaspar Wüthrich, 2016. "Local quantile treatment effects," Diskussionsschriften dp1605, Universitaet Bern, Departement Volkswirtschaft.
    18. Biewen, Martin & Fitzenberger, Bernd & Seckler, Matthias, 2020. "Counterfactual quantile decompositions with selection correction taking into account Huber/Melly (2015): An application to the German gender wage gap," Labour Economics, Elsevier, vol. 67(C).
    19. Claudia Olivetti & Barbara Petrongolo, 2008. "Unequal Pay or Unequal Employment? A Cross-Country Analysis of Gender Gaps," Journal of Labor Economics, University of Chicago Press, vol. 26(4), pages 621-654, October.
    20. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:75/15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.