IDEAS home Printed from
   My bibliography  Save this article

Modelling sample selection using Archimedean copulas


  • Murray D. Smith


By a theorem due to Sklar, a multivariate distribution can be represented in terms of its underlying margins by binding them together using a copula function. By exploiting this representation, the "copula approach" to modelling proceeds by specifying distributions for each margin and a copula function. In this paper, a number of families of copula functions are given, with attention focusing on those that fall within the Archimedean class. Members of this class of copulas are shown to be rich in various distributional attributes that are desired when modelling. The paper then proceeds by applying the copula approach to construct models for data that may suffer from selectivity bias. The models examined are the self-selection model, the switching regime model and the double-selection model. It is shown that when models are constructed using copulas from the Archimedean class, the resulting expressions for the log-likelihood and score facilitate maximum likelihood estimation. The literature on selectivity modelling is almost exclusively based on multivariate normal specifications. The copula approach permits selection modelling based on multivariate non-normality. Examples of self-selection models for labour supply and for duration of hospitalization illustrate the application of the copula approach to modelling. Copyright Royal Economic Society, 2003

Suggested Citation

  • Murray D. Smith, 2003. "Modelling sample selection using Archimedean copulas," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 99-123, June.
  • Handle: RePEc:ect:emjrnl:v:6:y:2003:i:1:p:99-123

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:6:y:2003:i:1:p:99-123. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.