IDEAS home Printed from https://ideas.repec.org/p/usg/econwp/201109.html
   My bibliography  Save this paper

Quantile Regression in the Presence of Sample Selection

Author

Listed:
  • Huber, Martin
  • Melly, Blaise

Abstract

Most sample selection models assume that the errors are independent of the regressors. Under this assumption, all quantile and mean functions are parallel, which implies that quantile estimators cannot reveal any (per definition non-existing) heterogeneity. However, quantile estimators are useful for testing the independence assumption, because they are consistent under the null hypothesis. We propose tests for this crucial restriction that are based on the entire conditional quantile regression process after correcting for sample selection bias. Monte Carlo simulations demonstrate that they are powerful and two empirical illustrations indicate that violations of this assumption are likely to be ubiquitous in labor economics.

Suggested Citation

  • Huber, Martin & Melly, Blaise, 2011. "Quantile Regression in the Presence of Sample Selection," Economics Working Paper Series 1109, University of St. Gallen, School of Economics and Political Science.
  • Handle: RePEc:usg:econwp:2011:09
    as

    Download full text from publisher

    File URL: http://ux-tauri.unisg.ch/RePEc/usg/econwp/EWP-1109.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angrist, Joshua D., 1997. "Conditional independence in sample selection models," Economics Letters, Elsevier, vol. 54(2), pages 103-112, February.
    2. Amemiya, Takeshi, 1982. "Two Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 50(3), pages 689-711, May.
    3. Chen, Songnian & Khan, Shakeeb, 2003. "Semiparametric Estimation Of A Heteroskedastic Sample Selection Model," Econometric Theory, Cambridge University Press, vol. 19(6), pages 1040-1064, December.
    4. Chaudhuri, Probal, 1991. "Global nonparametric estimation of conditional quantile functions and their derivatives," Journal of Multivariate Analysis, Elsevier, vol. 39(2), pages 246-269, November.
    5. Blundell, Richard & Powell, James L., 2007. "Censored regression quantiles with endogenous regressors," Journal of Econometrics, Elsevier, vol. 141(1), pages 65-83, November.
    6. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    7. Whitney K. Newey, 2009. "Two-step series estimation of sample selection models," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 217-229, January.
    8. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    9. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, April.
    10. Gronau, Reuben, 1974. "Wage Comparisons-A Selectivity Bias," Journal of Political Economy, University of Chicago Press, vol. 82(6), pages 1119-1143, Nov.-Dec..
    11. Martin Huber & Giovanni Mellace, 2015. "Sharp Bounds on Causal Effects under Sample Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 129-151, February.
    12. Mitali Das & Whitney K. Newey & Francis Vella, 2003. "Nonparametric Estimation of Sample Selection Models," Review of Economic Studies, Oxford University Press, vol. 70(1), pages 33-58.
    13. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    14. Moshe Buchinsky, 1998. "The dynamics of changes in the female wage distribution in the USA: a quantile regression approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 1-30.
    15. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    16. Donald, Stephen G., 1995. "Two-step estimation of heteroskedastic sample selection models," Journal of Econometrics, Elsevier, vol. 65(2), pages 347-380, February.
    17. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    18. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    19. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    20. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    21. Michael Lechner & Blaise Melly, 2010. "Partial Idendification of Wage Effects of Training Programs," Working Papers 2010-8, Brown University, Department of Economics.
    22. Powell, James L, 1983. "The Asymptotic Normality of Two-Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 51(5), pages 1569-1575, September.
    23. Lee, Sokbae, 2007. "Endogeneity in quantile regression models: A control function approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
    24. Matzkin, Rosa L., 2007. "Nonparametric identification," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 73, Elsevier.
    25. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    26. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    27. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
    28. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    29. Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
    30. Powell, James L., 1987. "Semiparametric Estimation Of Bivariate Latent Variable Models," SSRI Workshop Series 292689, University of Wisconsin-Madison, Social Systems Research Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tansel, Aysit & Keskin, Halil Ibrahim & Ozdemir, Zeynel Abidin, 2008. "Public versus Private Sector Wage Gap in Egypt: Evidence from Quantile Regression on Panel Data," MPRA Paper 89540, University Library of Munich, Germany.
    2. Martin Huber & Giovanni Mellace, 2015. "Sharp Bounds on Causal Effects under Sample Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 129-151, February.
    3. Olivier Bargain & Prudence Kwenda, 2014. "The Informal Sector Wage Gap: New Evidence Using Quantile Estimations on Panel Data," Economic Development and Cultural Change, University of Chicago Press, vol. 63(1), pages 117-153.
    4. Schwiebert, Jörg, 2012. "Semiparametric Estimation of a Sample Selection Model in the Presence of Endogeneity," Hannover Economic Papers (HEP) dp-504, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    5. Philippe Van Kerm, 2013. "Generalized measures of wage differentials," Empirical Economics, Springer, vol. 45(1), pages 465-482, August.
    6. Rebekka Christopoulou & Vassilis Monastiriotis, 2016. "Public-private wage duality during the Greek crisis," Oxford Economic Papers, Oxford University Press, vol. 68(1), pages 174-196.
    7. Philippe Van Kerm & Seunghee Yu & Chung Choe, 2016. "Decomposing quantile wage gaps: a conditional likelihood approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 507-527, August.
    8. Ekaterina Selezneva & Philippe Van Kerm, 2013. "Inequality-Adjusted Gender Wage Differentials in Germany," SOEPpapers on Multidisciplinary Panel Data Research 579, DIW Berlin, The German Socio-Economic Panel (SOEP).
    9. Tansel, Aysit & Keskin, Halil Ibrahim & Ozdemir, Zeynel Abidin, 2008. "Public versus Private Sector Wage Gap in Egypt: Evidence from Quantile Regression on Panel Data," MPRA Paper 89540, University Library of Munich, Germany.
    10. DOORLEY Karina & SIERMINSKA Eva, 2011. "Beauty and the beast in the labor market: Evidence from a distribution regression approach," LISER Working Paper Series 2011-62, Luxembourg Institute of Socio-Economic Research (LISER).
    11. Ekaterina Selezneva & Philippe Van Kerm, 2016. "A distribution-sensitive examination of the gender wage gap in Germany," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 14(1), pages 21-40, March.
    12. Stefan Hoderlein & Bettina Siflinger & Joachim Winter, 2015. "Identification of structural models in the presence of measurement error due to rounding in survey responses," Boston College Working Papers in Economics 869, Boston College Department of Economics.
    13. Christofides, Louis N. & Polycarpou, Alexandros & Vrachimis, Konstantinos, 2013. "Gender wage gaps, ‘sticky floors’ and ‘glass ceilings’ in Europe," Labour Economics, Elsevier, vol. 21(C), pages 86-102.
    14. Bargain, Olivier & Doorley, Karina & Van Kerm, Philippe, 2018. "Minimum Wages and the Gender Gap in Pay: New Evidence from the UK and Ireland," IZA Discussion Papers 11502, Institute of Labor Economics (IZA).
    15. Zheng Fang & Chris Sakellariou, 2015. "Glass Ceilings versus Sticky Floors: Evidence from Southeast Asia and an International Update," Asian Economic Journal, East Asian Economic Association, vol. 29(3), pages 215-242, September.
    16. Martin Huber & Blaise Melly, 2012. "A test of the conditional independence assumption in sample selection models," Working Papers 2012-11, Brown University, Department of Economics.
    17. Rebekka Christopoulou & Vassilis Monastiriotis, 2014. "The Greek Public Sector Wage Premium before the Crisis: Size, Selection and Relative Valuation of Characteristics," British Journal of Industrial Relations, London School of Economics, vol. 52(3), pages 579-602, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Huber & Blaise Melly, 2012. "A test of the conditional independence assumption in sample selection models," Working Papers 2012-11, Brown University, Department of Economics.
    2. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, number 8355.
    3. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Robust Estimation of Wage Dispersion with Censored Data: An Application to Occupational Earnings Risk and Risk Attitudes," De Economist, Springer, vol. 168(4), pages 519-540, December.
    4. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    5. D’Haultfœuille, Xavier & Maurel, Arnaud & Zhang, Yichong, 2018. "Extremal quantile regressions for selection models and the black–white wage gap," Journal of Econometrics, Elsevier, vol. 203(1), pages 129-142.
    6. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    7. Lee, Sokbae, 2007. "Endogeneity in quantile regression models: A control function approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
    8. Blundell, Richard & Powell, James L., 2007. "Censored regression quantiles with endogenous regressors," Journal of Econometrics, Elsevier, vol. 141(1), pages 65-83, November.
    9. Liu, Ruixuan & Yu, Zhengfei, 2022. "Sample selection models with monotone control functions," Journal of Econometrics, Elsevier, vol. 226(2), pages 321-342.
    10. Mikhail Zhelonkin & Marc G. Genton & Elvezio Ronchetti, 2016. "Robust inference in sample selection models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 805-827, September.
    11. Huber, Martin & Mellace, Giovanni, 2011. "Testing instrument validity in sample selection models," Economics Working Paper Series 1145, University of St. Gallen, School of Economics and Political Science.
    12. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    13. Christophe Muller, 2019. "Linear Quantile Regression and Endogeneity Correction," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(5), pages 123-128, August.
    14. Hamermesh, Daniel S. & Donald, Stephen G., 2008. "The effect of college curriculum on earnings: An affinity identifier for non-ignorable non-response bias," Journal of Econometrics, Elsevier, vol. 144(2), pages 479-491, June.
    15. Martin Huber & Giovanni Mellace, 2014. "Testing exclusion restrictions and additive separability in sample selection models," Empirical Economics, Springer, vol. 47(1), pages 75-92, August.
    16. Xavier D’Haultfoeuille & Arnaud Maurel & Xiaoyun Qiu & Yichong Zhang, 2020. "Estimating selection models without an instrument with Stata," Stata Journal, StataCorp LP, vol. 20(2), pages 297-308, June.
    17. Gilles Dufrenot & Valerie Mignon & Charalambos Tsangarides, 2010. "The trade-growth nexus in the developing countries: a quantile regression approach," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 146(4), pages 731-761, December.
    18. Angela (Xia) Liu & Tridib Mazumdar & Bo Li, 2015. "Counterfactual Decomposition of Movie Star Effects with Star Selection," Management Science, INFORMS, vol. 61(7), pages 1704-1721, July.
    19. Cinthya G. Caamal Olvera, 2017. "Decreasing returns to schooling in Mexico," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 32(1), pages 27-63.
    20. White, Halbert & Kim, Tae-Hwan, 2002. "Estimation, Inference, and Specification Testing for Possibly Misspecified Quantile Regression," University of California at San Diego, Economics Working Paper Series qt1s38s0dn, Department of Economics, UC San Diego.

    More about this item

    Keywords

    Sample selection; quantile regression; independence; test;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usg:econwp:2011:09. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vwasgch.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/vwasgch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.