IDEAS home Printed from https://ideas.repec.org/a/uwp/jhriss/v33y1998i1p88-126.html
   My bibliography  Save this article

Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research

Author

Listed:
  • Moshe Buchinsky

Abstract

This paper provides a guideline for the practical use of the semi-parametric technique of quantile regression, concentrating on cross-section applications. It summarizes the most important issues in quantile regression applications and fills some gaps in the literature. The paper (a) presents several alternative estimators for the covariance matrix of the quantile regression estimates; (b) reviews the results for a sequence of quantile regression estimates; and (c) discusses testing procedures for homoskedasticity and symmetry of the error distribution. The various results in the literature are incorporated into the generalized method of moments frame-work. The paper also provides an empirical example using data from the Current Population Survey, raising several important issues relevant to empirical applications of quantile regression. The paper concludes with an extension to the censored quantile regression model.

Suggested Citation

  • Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
  • Handle: RePEc:uwp:jhriss:v:33:y:1998:i:1:p:88-126
    as

    Download full text from publisher

    File URL: http://www.jstor.org/stable/pdfplus/146316
    Download Restriction: A subscripton is required to access pdf files. Pay per article is available.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Newey, Whitney K. & Powell, James L., 1990. "Efficient Estimation of Linear and Type I Censored Regression Models Under Conditional Quantile Restrictions," Econometric Theory, Cambridge University Press, vol. 6(3), pages 295-317, September.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. James M. Poterba & Kim S. Rueben, 1994. "The Distribution of Public Sector Wage Premia: New Evidence Using Quantile Regression Methods," NBER Working Papers 4734, National Bureau of Economic Research, Inc.
    4. Weiss, Andrew A., 1991. "Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation," Econometric Theory, Cambridge University Press, vol. 7(1), pages 46-68, March.
    5. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    6. Jacob A. Mincer, 1974. "Introduction to "Schooling, Experience, and Earnings"," NBER Chapters, in: Schooling, Experience, and Earnings, pages 1-4, National Bureau of Economic Research, Inc.
    7. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    8. Bai, Jushan, 1995. "Least Absolute Deviation Estimation of a Shift," Econometric Theory, Cambridge University Press, vol. 11(3), pages 403-436, June.
    9. Jacob A. Mincer, 1974. "Schooling, Experience, and Earnings," NBER Books, National Bureau of Economic Research, Inc, number minc74-1.
    10. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    11. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    12. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buchinsky, Moshe, 1995. "Quantile regression, Box-Cox transformation model, and the U.S. wage structure, 1963-1987," Journal of Econometrics, Elsevier, vol. 65(1), pages 109-154, January.
    2. Melly, Blaise, 2005. "Decomposition of differences in distribution using quantile regression," Labour Economics, Elsevier, vol. 12(4), pages 577-590, August.
    3. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    4. Buchinsky, Moshe, 1995. "Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study," Journal of Econometrics, Elsevier, vol. 68(2), pages 303-338, August.
    5. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    6. Robert F. Engle & Simone Manganelli, 1999. "CAViaR: Conditional Value at Risk by Quantile Regression," NBER Working Papers 7341, National Bureau of Economic Research, Inc.
    7. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    8. Oberhofer, Walter & Haupt, Harry, 2005. "Consistency of nonlinear regression quantiles under Type I censoring weak dependence and general covariate design," University of Regensburg Working Papers in Business, Economics and Management Information Systems 406, University of Regensburg, Department of Economics.
    9. Bilias, Yannis & Chen, Songnian & Ying, Zhiliang, 2000. "Simple resampling methods for censored regression quantiles," Journal of Econometrics, Elsevier, vol. 99(2), pages 373-386, December.
    10. Gregory Kordas, 2006. "Smoothed binary regression quantiles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 387-407, April.
    11. Otsu, Taisuke, 2008. "Conditional empirical likelihood estimation and inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 142(1), pages 508-538, January.
    12. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
    13. White, Halbert & Kim, Tae-Hwan, 2002. "Estimation, Inference, and Specification Testing for Possibly Misspecified Quantile Regression," University of California at San Diego, Economics Working Paper Series qt1s38s0dn, Department of Economics, UC San Diego.
    14. Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
    15. Heinze, Anja, 2010. "Beyond the mean gender wage gap: Decomposition of differences in wage distributions using quantile regression," ZEW Discussion Papers 10-043, ZEW - Leibniz Centre for European Economic Research.
    16. Sun, Yiguo, 2006. "A Consistent Nonparametric Equality Test Of Conditional Quantile Functions," Econometric Theory, Cambridge University Press, vol. 22(4), pages 614-632, August.
    17. Machado, José A.F. & Santos Silva, J.M.C. & Wei, Kehai, 2016. "Quantiles, corners, and the extensive margin of trade," European Economic Review, Elsevier, vol. 89(C), pages 73-84.
    18. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Robust Estimation of Wage Dispersion with Censored Data: An Application to Occupational Earnings Risk and Risk Attitudes," De Economist, Springer, vol. 168(4), pages 519-540, December.
    19. William M. Rodgers, 2006. "Male White‐Black Wage Gaps, 1979‐1994: A Distributional Analysis," Southern Economic Journal, John Wiley & Sons, vol. 72(4), pages 773-793, April.
    20. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Dispersion estimation; Earnings risk; Censoring; Quantile regression; Occupational choice; Sorting; Risk preferences; SOEP; IABS," ECONtribute Discussion Papers Series 028, University of Bonn and University of Cologne, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uwp:jhriss:v:33:y:1998:i:1:p:88-126. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://jhr.uwpress.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: http://jhr.uwpress.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.