IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v85y2017ip1-28.html

Quantile Selection Models With an Application to Understanding Changes in Wage Inequality

Author

Listed:
  • Manuel Arellano
  • Stéphane Bonhomme

Abstract

We propose a method to correct for sample selection in quantile regression models. Selection is modeled via the cumulative distribution function, or copula, of the percentile error in the outcome equation and the error in the participation decision. Copula parameters are estimated by minimizing a method‐of‐moments criterion. Given these parameter estimates, the percentile levels of the outcome are readjusted to correct for selection, and quantile parameters are estimated by minimizing a rotated “check” function. We apply the method to correct wage percentiles for selection into employment, using data for the UK for the period 1978–2000. We also extend the method to account for the presence of equilibrium effects when performing counterfactual exercises.

Suggested Citation

  • Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
  • Handle: RePEc:wly:emetrp:v:85:y:2017:i::p:1-28
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:85:y:2017:i::p:1-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.