IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this book chapter

Nonparametric identification

In: Handbook of Econometrics

Listed author(s):
  • Matzkin, Rosa L.

When one wants to estimate a model without specifying the functions and distributions parametrically, or when one wants to analyze the identification of a model independently of any particular parametric specification, it is useful to perform a nonparametric analysis of identification. This chapter presents some of the recent results on the identification of nonparametric econometric models. It considers identification in models that are additive in unobservable random terms and in models that are nonadditive in unobservable random terms. Single equation models as well as models with a system of equations are studied. Among the latter, special attention is given to structural models whose reduced forms are triangular in the unobservable random terms, and to simultaneous equations, where the reduced forms are functions of all the unobservable variables in the system. The chapter first presents some general identification results for single-equation models that are additive in unobservable random terms, single-equation models that are nonadditive in unobservable random terms, single-equation models that possess and index structure, simultaneous equations nonadditive in unobservable random terms, and discrete choice models. Then, particular ways of achieving identification are considered. These include making use of conditional independence restrictions, marginal independence restrictions, shape restrictions on functions, shape restrictions on distributions, and restrictions in both functions and distributions. The objective is to provide insight into some of the recent techniques that have been developed recently, rather than on presenting a complete survey of the literature.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

in new window

This chapter was published in:
  • J.J. Heckman & E.E. Leamer (ed.), 2007. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 6, number 6b.
  • This item is provided by Elsevier in its series Handbook of Econometrics with number 6b-73.
    Handle: RePEc:eee:ecochp:6b-73
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ecochp:6b-73. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.