IDEAS home Printed from https://ideas.repec.org/p/cvs/starer/92-49.html
   My bibliography  Save this paper

The Conditional Distribution of Excess Returns: An Empirical Analysis

Author

Listed:
  • Foresi, S.
  • Paracchi, F.

Abstract

No abstract is available for this item.

Suggested Citation

  • Foresi, S. & Paracchi, F., 1992. "The Conditional Distribution of Excess Returns: An Empirical Analysis," Working Papers 92-49, C.V. Starr Center for Applied Economics, New York University.
  • Handle: RePEc:cvs:starer:92-49
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    3. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, Elsevier.
    4. Loriano Mancini & Fabio Trojani, 2011. "Robust Value at Risk Prediction," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(2), pages 281-313, Spring.
    5. Doorley, Karina & Sierminska, Eva, 2012. "Myth or Fact? The Beauty Premium across the Wage Distribution," IZA Discussion Papers 6674, Institute for the Study of Labor (IZA).
    6. Christoph Rothe & Dominik Wied, 2013. "Misspecification Testing in a Class of Conditional Distributional Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 314-324, March.
    7. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    8. Peracchi, Franco, 2002. "On estimating conditional quantiles and distribution functions," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 433-447, February.
    9. Christoph Rothe, 2012. "Partial Distributional Policy Effects," Econometrica, Econometric Society, vol. 80(5), pages 2269-2301, September.
    10. Andrew Jones & Nigel Rice & Pedro Rosa Dias, 2012. "Quality of schooling and inequality of opportunity in health," Empirical Economics, Springer, vol. 42(2), pages 369-394, April.
    11. de Meijer, Claudine & O’Donnell, Owen & Koopmanschap, Marc & van Doorslaer, Eddy, 2013. "Health expenditure growth: Looking beyond the average through decomposition of the full distribution," Journal of Health Economics, Elsevier, vol. 32(1), pages 88-105.
    12. Jones, A. & Lomas, J. & Rice, N., 2014. "Going Beyond the Mean in Healthcare Cost Regressions: a Comparison of Methods for Estimating the Full Conditional Distribution," Health, Econometrics and Data Group (HEDG) Working Papers 14/26, HEDG, c/o Department of Economics, University of York.
    13. Leorato, Samantha & Peracchi, Franco & Tanase, Andrei V., 2012. "Asymptotically efficient estimation of the conditional expected shortfall," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 768-784.
    14. Roger Koenker & Samantha Leorato & Franco Peracchi, 2013. "Distributional vs. Quantile Regression," EIEF Working Papers Series 1329, Einaudi Institute for Economics and Finance (EIEF), revised Dec 2013.
    15. Arun Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2012. "Inference for best linear approximations to set identified functions," CeMMAP working papers CWP43/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Hall, Peter & Yao, Qiwei, 2005. "Approximating conditional distribution functions using dimension reduction," LSE Research Online Documents on Economics 16333, London School of Economics and Political Science, LSE Library.
    17. DOORLEY Karina & SIERMINSKA Eva, 2011. "Beauty and the beast in the labor market: Evidence from a distribution regression approach," LISER Working Paper Series 2011-62, LISER.

    More about this item

    Keywords

    econometrics ; evaluation;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cvs:starer:92-49. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anne Stubing). General contact details of provider: http://edirc.repec.org/data/aenyuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.